4.7 Article

Spatial covariance analysis reveals the residue-by-residue thermodynamic contribution of variation to the CFTR fold

期刊

COMMUNICATIONS BIOLOGY
卷 5, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s42003-022-03302-2

关键词

-

资金

  1. NIH [HL095524, DK051870, AG070209, AG049665, HL141810, HG010881]
  2. CFFT

向作者/读者索取更多资源

Spatial covariance analysis shows how each residue in the critical fold region of chloride channel CFTR, defective in cystic fibrosis patients, contributes to CFTR's export from the endoplasmic reticulum and function in the cell.
Although the impact of genome variation on the thermodynamic properties of function on the protein fold has been studied in vitro, it remains a challenge to assign these relationships across the entire polypeptide sequence in vivo. Using the Gaussian process regression based principle of Spatial CoVariance, we globally assign on a residue-by-residue basis the biological thermodynamic properties that contribute to the functional fold of CFTR in the cell. We demonstrate the existence of a thermodynamically sensitive region of the CFTR fold involving the interface between NBD1 and ICL4 that contributes to its export from endoplasmic reticulum. At the cell surface a new set of residues contribute uniquely to the management of channel function. These results support a general 'quality assurance' view of global protein fold management as an SCV principle describing the differential pre- and post-ER residue interactions contributing to compartmentalization of the energetics of the protein fold for function. Our results set the stage for future analyses of the quality systems managing protein sequence-to-function-to-structure broadly encompassing genome design leading to protein function in complex cellular relationships responsible for diversity and fitness in biology in response to the environment. Spatial covariance analysis shows how each residue in the critical fold region of chloride channel CFTR, defective in cystic fibrosis patients, contributes to CFTR's export from the endoplasmic reticulum and function in the cell.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据