4.6 Article

Pharmacological Effects of Gami-Yukmijihwang-Tang on the Lipopolysaccharide-Induced Hippocampus Oxidation and Inflammation via Regulation of Sirt6

期刊

PHARMACEUTICALS
卷 15, 期 3, 页码 -

出版社

MDPI
DOI: 10.3390/ph15030293

关键词

Yukmijihwang-Tang; neuroinflammation; oxidative stress; hippocampus; sirtuin6; nuclear factor erythroid 2-related factor 2

资金

  1. National Research Foundation (NRF) of Korea - Korea government [2019R1F1A1061062]
  2. National Research Foundation of Korea [2019R1F1A1061062] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

向作者/读者索取更多资源

In this study, it was found that Gami-Yukmijihwang-Tang (YJT) could alleviate neuroinflammation and oxidative stress induced by repeated lipopolysaccharide (LPS) injections. The protective effects of YJT were achieved by regulating Sirtuin 6 (Sirt6)-related pathways and normalizing the glutathione (GSH) redox cycle.
Yukmijihwang-Tang is widely used in traditional Korean medicine to treat age-related disorders. In the present study, we re-prescribed Gami-Yukmijihwang-Tang (YJT), which is slightly modified from Yukmijihwang-Tang by adding more medicinal plants to evaluate its pharmacological effects on underlying mechanisms against repeated lipopolysaccharide (LPS)-injection-induced neuroinflammation in the hippocampus regions. C57BL/6J male mice (16-24 weeks old) were divided into six groups: (1) the control group (DW with 0.9% saline injection), (2) LPS group (DW with LPS injection), YJT groups ((3) 100, (4) 200, or (5) 400 mg/kg of YJT with LPS injection), and (6) glutathione (GSH) group (100 mg/kg of GSH with LPS injection), respectively. Mice were orally administrated with various doses of YJT or glutathione (GSH) for the first five days. Neuroinflammation in the hippocampus region was induced by repeated injection of LPS during the last three days. As predicted, LPS not only increased oxidative stress-related markers including malondialdehyde, 4-hydroxynonenal, nitrotryptophan, and hydrogen peroxide, but also drastically enhanced inflammatory reactions including nitric oxide, inducible nitric oxide synthase, p65, and toll-like receptor 4, respectively. YJT administration, on the other hand, notably decreased the above pathological alterations by enhancement of antioxidant capacities such as superoxide dismutase and catalase activities. To explain the underlying pharmacological actions of YJT, we focused on a representative epigenetic regulator, a nicotinamide adenine dinucleotide + (NAD+)-dependent chromatin enzyme, Sirtuin 6 (Sirt6). Neuroinflammation in hippocampus regions depleted Sirt6 at the protein level and this alteration directly affected the nuclear factor erythroid 2-related factor (Nrf2)/hemeoxygenase (HO)-1 signaling pathway in the LPS group; however, YJT significantly recovered the Sirt6 protein levels, and it could recover the abnormal status of Nrf2/HO-1 signaling pathways in the hippocampus regions. Additionally, Sirt6 led to the up-regulation of GSH sub-enzymes of mRNA expression and protein levels of total GSH content. These findings suggest that YJT can protect against LPS-induced neuroinflammation and oxidative stress by regulating the Sirt6-related pathways and normalizing the GSH redox cycle.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据