4.7 Article

Machine-Learning-Based Late Fusion on Multi-Omics and Multi-Scale Data for Non-Small-Cell Lung Cancer Diagnosis

期刊

JOURNAL OF PERSONALIZED MEDICINE
卷 12, 期 4, 页码 -

出版社

MDPI
DOI: 10.3390/jpm12040601

关键词

NSCLC; machine learning; information fusion; deep learning; personalized medicine; artificial neural networks

资金

  1. Government of Andalusia [RTI2018-101674-B-I00]
  2. [CV20-64934]
  3. [P20-00163]

向作者/读者索取更多资源

This study explored fusion of five multi-scale and multi-omic modalities for lung cancer classification using machine learning techniques. The final classification model achieved high scores, indicating that leveraging the multi-scale and multi-omic nature of cancer data can enhance diagnostic performance.
Differentiation between the various non-small-cell lung cancer subtypes is crucial for providing an effective treatment to the patient. For this purpose, machine learning techniques have been used in recent years over the available biological data from patients. However, in most cases this problem has been treated using a single-modality approach, not exploring the potential of the multi-scale and multi-omic nature of cancer data for the classification. In this work, we study the fusion of five multi-scale and multi-omic modalities (RNA-Seq, miRNA-Seq, whole-slide imaging, copy number variation, and DNA methylation) by using a late fusion strategy and machine learning techniques. We train an independent machine learning model for each modality and we explore the interactions and gains that can be obtained by fusing their outputs in an increasing manner, by using a novel optimization approach to compute the parameters of the late fusion. The final classification model, using all modalities, obtains an F1 score of 96.81 +/- 1.07, an AUC of 0.993 +/- 0.004, and an AUPRC of 0.980 +/- 0.016, improving those results that each independent model obtains and those presented in the literature for this problem. These obtained results show that leveraging the multi-scale and multi-omic nature of cancer data can enhance the performance of single-modality clinical decision support systems in personalized medicine, consequently improving the diagnosis of the patient.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据