4.7 Article

Bacteroides ovatus colonization influences the abundance of intestinal short chain fatty acids and neurotransmitters

期刊

ISCIENCE
卷 25, 期 5, 页码 -

出版社

CELL PRESS
DOI: 10.1016/j.isci.2022.104158

关键词

-

资金

  1. Texas Children's Hospital Department of Pathology and Immunology

向作者/读者索取更多资源

Gut microbes, specifically Bacteroides ovatus, are capable of synthesizing various neuro-active metabolites, which in turn can affect the concentrations of intestinal neurotransmitters.
Gut microbes can synthesize multiple neuro-active metabolites. We profiled neuro-active compounds produced by the gut commensal Bacteroides ovatus in vitro and in vivo by LC-MS/MS. We found that B. ovatus generates acetic acid, propionic acid, isobutyric acid, and isovaleric acid. In vitro, B. ovatus consumed tryptophan and glutamate and synthesized the neuro-active compounds glutamine and GABA. Consistent with our LC-MS/MS-based in vitro data, we observed elevated levels of acetic acid, propionic acid, isobutyric acid, and isovaleric acid in the intestines of B. ovatus mono-associated mice compared with germ-free controls. B. ovatus mono-association also increased the concentrations of intestinal GABA and decreased the concentrations of tryptophan and glutamine compared with germ-free controls. Computational network analysis revealed unique links between SCFAs, neuro-active compounds, and colonization status. These results highlight connections between microbial colonization and intestinal neurotransmitter concentrations, suggesting that B. ovatus selectively influences the presence of intestinal neurotransmitters.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据