4.7 Article

Soliton linear-wave scattering in a Kerr microresonator

期刊

COMMUNICATIONS PHYSICS
卷 5, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s42005-022-00903-5

关键词

-

资金

  1. Marsden Fund
  2. Rutherford Discovery Fellowships of the Royal Society of New Zealand

向作者/读者索取更多资源

This paper investigates the scattering of an externally injected probe wave from a dissipative cavity soliton in a Kerr microresonator, and demonstrates the potential of using this nonlinear interaction to expand the soliton frequency comb. The research shows that the detuning of the injected probe from a cavity resonance plays a key role in controlling the central frequency and spectral envelope of the comb.
The nonlinear scattering of a linear optical wave from a conservative soliton has been widely studied in optical fibers as a mechanism for nonlinear frequency conversion. Here we extend this analysis to consider the scattering of an externally injected probe wave from a dissipative cavity soliton circulating in a Kerr microresonator. We demonstrate, both theoretically and experimentally, that this nonlinear interaction can be harnessed for useful expansion of the soliton frequency comb via the formation of a secondary idler comb. We explore the physics of the process, showing that the phase detuning of the injected probe from a cavity resonance plays a key role in setting the central frequency of the idler comb, thus providing a convenient parameter through which to control the spectral envelope of that comb. Our results elucidate the dynamics that govern the interactions between dissipative Kerr cavity solitons and externally injected probe waves, and could prove useful in the design of future Kerr frequency comb systems by enabling the possibility to provide high-power comb lines in a specified spectral region simply through the injection of a suitably chosen probe. Tuneable microresonator frequency combs offer low-power, coherent light with a small device footprint. Here, the concept of controlling the comb frequency by detuning the probe phase is translated from photonic crystal fibres to a Kerr microresonator.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据