4.6 Article

The Therapeutic Effect of iMSC-Derived Small Extracellular Vesicles on Tendinopathy Related Pain Through Alleviating Inflammation: An in vivo and in vitro Study

期刊

JOURNAL OF INFLAMMATION RESEARCH
卷 15, 期 -, 页码 1421-1436

出版社

DOVE MEDICAL PRESS LTD
DOI: 10.2147/JIR.S345517

关键词

tendinopathy; pain relief; extracellular vesicles; iPSC derived MSC

资金

  1. National Natural Science Foundation of China [81572120, 82072550]

向作者/读者索取更多资源

The study demonstrated that local injection of iMSC-sEVs effectively reduced pain in rat tendinopathy model, ameliorated tendon histology, promoted tenocyte proliferation, and decreased expression of proinflammatory cytokines. Transcriptome analysis revealed that iMSC-sEVs treatment upregulated genes related to cell proliferation and downregulated genes involved in inflammation and collagen degeneration. These findings suggest that iMSC-sEVs could be a promising therapeutic candidate for tendinopathy.
Background: Tendinopathy is a common cause of tendon pain. However, there is a lack of effective therapies for managing tendinopathy pain, despite the pain being the most common complaint of patients. This study aimed to evaluate the therapeutic effect of small extracellular vesicles released from induced pluripotent stem cell-derived mesenchymal stem cells (iMSC-sEVs) on tendinopathy pain and explore the underlying mechanisms. Methods: Rat tendinopathy model was established and underwent the injection of iMSC-sEVs to the quadriceps tendon one week after modeling. Pain-related behaviors were measured for the following four weeks. Tendon histology was assessed four weeks after the injection. To further investigate the potential mechanism, tenocytes were stimulated with IL-1 beta to mimic tendinopathy in vitro. The effect of iMSC-sEVs on tenocyte proliferation and the expression of proinflammatory cytokines were measured by CCK-8, RT-qPCR, and ELISA. RNA-seq was further performed to systematically analyze the related global changes and underlying mechanisms. Results: Local injection of iMSC-sEVs was effective in alleviating pain in the tendinopathy rats compared with the vehicle group. Tendon histology showed ameliorated tendinopathy characteristics. Upon iMSC-sEVs treatment, significantly increased tenocyte proliferation and less expression of proinflammatory cytokines were observed. Transcriptome analysis revealed that iMSC-sEVs treatment upregulated the expression of genes involved in cell proliferation and downregulated the expression of genes involved in inflammation and collagen degeneration. Conclusion: Collectively, this study demonstrated iMSC-sEVs protect tenocytes from inflammatory stimulation and promote cell proliferation as well as collagen synthesis, thereby relieving pain derived from tendinopathy. As a cell-free regenerative treatment, iMSC-sEVs might be a promising therapeutic candidate for tendinopathy.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据