4.5 Article

Branch point twist field form factors in the sine-Gordon model II: Composite twist fields and symmetry resolved entanglement

期刊

SCIPOST PHYSICS
卷 12, 期 3, 页码 -

出版社

SCIPOST FOUNDATION
DOI: 10.21468/SciPostPhys.12.3.088

关键词

-

资金

  1. ERC [771536]

向作者/读者索取更多资源

In this paper, we continue our study of entanglement measures in the sine-Gordon model. We focus on the symmetry resolved entanglement and develop its associated twist field description. We solve the form factor equations for various examples in the breather sector and show that the leading contribution to the symmetry resolved entanglement is independent of the symmetry sector.
In this paper we continue the program initiated in Part I, that is the study of entanglement measures in the sine-Gordon model. In both parts, we have focussed on one specific technique, that is the well-known connection between branch point twist field correlators and measures of entanglement in 1+1D integrable quantum field theory. Our papers apply this technique for the first time to a non-diagonal theory with an involved particle spectrum, the sine-Gordon model. In this Part II we focus on a different entanglement measure, the symmetry resolved entanglement, and develop its associated twist field description, exploiting the underlying U(1) symmetry of the theory. In this context, conventional branch point twist fields are no longer the fields required, but instead we must work with one of their composite generalisations, which can be understood as the field resulting from the fusion of a standard branch point twist field and the sine-Gordon exponential field associated with U(1) symmetry. The resulting composite twist field has correlators which as usual admit a form factor expansion. In this paper we write the associated form factor equations and solve them for various examples in the breather sector by using the method of angular quantisation. We show that, in the attractive regime, this is the sector which provides the leading contribution to the symmetry resolved entropies, both Renyi and von Neumann. We compute the latter in the limit of a large region size and show that they satisfy the property of equipartition, that is the leading contribution to the symmetry resolved entanglement is independent of the symmetry sector. (C) Copyright D. X. Horvath et al.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据