4.7 Article

Engineering a heteroatom-doped multidimensional carbon network for dendrite-free lithium metal anode

期刊

MATERIALS TODAY ENERGY
卷 24, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.mtener.2022.100949

关键词

3D composite anode; Codoping; Lithiophilicity; Synergetic effect; Dendrite-free plating

资金

  1. Australian Research Council (ARC) [DP180102297, FT180100705]
  2. Open Project of State Key Laboratory of Advanced Special Steel
  3. Science and Technology Commission of Shanghai Municipality [19DZ2270200]
  4. Shanghai Key Laboratory of Advanced Ferrometallurgy
  5. Joint International Laboratory on Environmental and Energy Frontier Materials
  6. Innovation Research Team of HigheLevel Local Universities in Shanghai
  7. Australian Research Council [FT180100705] Funding Source: Australian Research Council

向作者/读者索取更多资源

A multidimensional framework consisting of commercial carbon cloth (CC) and N, S-codoped porous carbon (PNSC) net (CC@PNSC) is fabricated and applied for lithium metal anode (LMA). The framework with a large specific surface area can decrease the local current density, and the codoping effect of nitrogen and sulfur enhances the lithiophilicity and lithium plating behavior. Li3N and Li2S formed during the infusion process facilitate Li ion transfer kinetics and homogenize the lithium ion flux diffusion, resulting in high specific capacity and cycling stability. When paired with LiFePO4, an extraordinary rate capacity and long-term cycling lifespan are achieved.
Lithium metal anode (LMA) has attracted widespread attention on account of its highest theoretical capacity and low reduction potential. However, the practical application of LMA has been long hindered by safety concerns and huge volume change resulting from the inevitable lithium dendrites growth. Herein, a multidimensional framework consisting of commercial carbon cloth (CC) and N, S-codoped porous carbon (PNSC) net (CC@PNSC) is fabricated and applied for LMA. This CC@PNSC skeleton has a large specific surface area, and the local current density can be significantly decreased. In addition, the synergetic effect of nitrogen and sulfur codoping endows CC with enhanced lithiophilicity and even lithium plating behavior. More importantly, the in-situ formed Li3N and Li2S during the molten lithium infusion process facilitate Li thorn transfer kinetics and effectively homogenize the Li thorn flux diffusion. The as prepared CC@PNSC-Li composite anode exhibits high specific capacity (3 mA h cm(-2), 500 h) and impressive cycling stability with a flat voltage profile at a current density of 1 mA cm(-2) (750 h). When paired with LiFePO4 (LFP), the LFP||CC@PNSC-Li cell delivers an extraordinary rate capacity (especially at 5C) and a long-term cycling lifespan at 1C (600 cycles and capacity retention of 89.06%).(C) 2022 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据