4.8 Article

Posttranslational modification of Aurora A-NSD2 loop contributes to drug resistance in t(4;14) multiple myeloma

期刊

出版社

JOHN WILEY & SONS LTD
DOI: 10.1002/ctm2.744

关键词

Aurora kinase A; multiple myeloma; NSD2; posttranslational modification

向作者/读者索取更多资源

This study discovered that the cytogenetic abnormality t(4;14) results in elevated levels of histone methyltransferase NSD2 in multiple myeloma patients. The study also found that Aurora A kinase phosphorylates NSD2 to enhance its methyltransferase activity, forming a positive regulatory loop that promotes chemoresistance. Targeting Aurora A pharmacologically sensitizes t(4;14) positive multiple myeloma to proteasome inhibitors. Overall, this research provides a new understanding of the mechanisms underlying chemoresistance in multiple myeloma and suggests a potential treatment strategy.
Background t(4;14)(p16;q32) cytogenetic abnormality renders high level of histone methyltransferase NSD2 in multiple myeloma (MM) patients, and predicts poor clinical prognosis, but mechanisms of NSD2 in promoting chemoresistance have not been well elucidated. Methods An epigenetics compound library containing 181 compounds was used to screen inhibitors possessing a prior synergistic effect with bortezomib (BTZ) in vitro. Molecular biology techniques were applied to uncover underlying mechanisms. Transcriptome profile assay was performed by RNA-seq. NSG mouse-based xenograft model and intra-bone model were applied to qualify the synergistic effect in vivo. Results We identified an Aurora kinase A inhibitor (MLN8237) possessed a significant synergistic effect with BTZ on t(4;14) positive MM cells. Aurora A protein level positively correlated with NSD2 level, and gain- and loss-of-functions of Aurora A correspondingly altered NSD2 protein and H3K36me2 levels. Mechanistically, Aurora A phosphorylated NSD2 at S56 residue to protect the protein from cleavage and degradation, thus methylation of Aurora A and phosphorylation of NSD2 bilaterally formed a positive regulating loop. Transcriptome profile assay of MM cells with AURKA depletion identified IL6R, STC2 and TCEA2 as the downstream target genes responsible for BTZ-resistance (BR). Clinically, higher expressions of these genes correlated with poorer outcomes of MM patients. Combined administration of MLN8237 and BTZ significantly suppressed tumour growth in LP-1 cells derived xenografts, and remarkably alleviated bone lesion in femurs of NSG mice. Conclusions Aurora A phosphorylates NSD2 at S56 residue to enhance NSD2 methyltransferase activity and form a positive regulating loop in promoting MM chemoresistance, thus pharmacologically targeting Aurora A sensitizes t(4;14) positive MM to the proteasome inhibitors treatment. Our study uncovers a previously unknown reason of MM patients with t(4;14) engendering chemoresistance, and provides a theoretical basis for developing new treatment strategy for MM patients with different genomic backgrounds.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据