4.8 Article

Bmi-1-RING1B prevents GATA4-dependent senescence-associated pathological cardiac hypertrophy by promoting autophagic degradation of GATA4

期刊

出版社

JOHN WILEY & SONS LTD
DOI: 10.1002/ctm2.574

关键词

Bmi-1; GATA4; RING1B; selective autophagy; ubiquitination

资金

  1. National Natural Science Foundation of China [81871097, 81571371, 81200491, 81730066]
  2. Qinglan project [2020-10]
  3. Jiangsu Government Scholarship for Overseas Studies [JS-2017-095]
  4. Natural Science Foundation of Jiangsu Province [BK20151554]

向作者/读者索取更多资源

This study found that Bmi-1-RING1B maintains cardiac function and prevents SA-PCH by promoting selective autophagy for degrading GATA4. Autophagy agonists metformin and rapamycin can ameliorate SA-PCH, suggesting that activation of autophagy could also be a promising method to prevent SA-PCH.
Aims Senescence-associated pathological cardiac hypertrophy (SA-PCH) is associated with upregulation of foetal genes, fibrosis, senescence-associated secretory phenotype (SASP), cardiac dysfunction and increased morbidity and mortality. Therefore, we conducted experiments to investigate whether GATA4 accumulation induces SA-PCH, and whether Bmi-1-RING1B promotes GATA4 ubiquitination and its selective autophagic degradation to prevent SA-PCH. Methods and results Bmi-1-deficient (Bmi-1(-/-)), transgenic Bmi-1 overexpressing (Bmi-1(Tg)) and wild-type (WT) mice were infused with angiotensin II (Ang II) to stimulate the development of SA-PCH. Through bioinformatics analysis with RNA sequencing data from cardiac tissues, we found that Bmi-1-RING1B and autophagy are negatively related to SA-PCH. Bmi-1 deficiency promoted GATA4-dependent SA-PCH by increasing GATA4 protein and hypertrophy-related molecules transcribed by GATA4 such as ANP and BNP. Bmi-1 deficiency stimulated NF-kappa B-p65-dependent SASP, leading to cardiac dysfunction, cardiomyocyte hypertrophy and senescence. Bmi-1 overexpression repressed GATA4-dependent SA-PCH. GATA4 degraded by Bmi-1 was mainly dependent on autophagy rather than proteasome. In human myocardium, p16 positively correlated with ANP and GATA4 and negatively correlated with LC3B, Bmi-1 and RING1B; GATA4 positively correlated with p62 and negatively correlated with Bmi-1 and LC3B. With increased p16 protein levels, ANP-, BNP- and GATA4-positive cells or areas increased; however, LC3B-positive cells or areas decreased in human myocardium. GATA4 is ubiquitinated after combining with Bmi-1-RING1B, which is then recognised by p62, is translocated to autophagosomes to form autophagolysosomes and degraded. Downregulated GATA4 ameliorated SA-PCH and cardiac dysfunction by reducing GATA4-dependent hypertrophy and SASP-related molecules. Bmi-1 combined with RING1B (residues 1-179) and C-terminus of GATA4 (residues 206-443 including zinc finger domains) through residues 1-95, including a RING-HC-finger. RING1B combined with C-terminus of GATA4 through the C-terminus (residues 180-336). Adeno-associated viral vector serotype 9 (AAV9)-cytomegalovirus (CMV)-Bmi-1-RING1B treatment significantly attenuated GATA4-dependent SA-PCH through promoting GATA4 autophagic degradation. Conclusions Bmi-1-RING1B maintained cardiac function and prevented SA-PCH by promoting selective autophagy for degrading GATA4. Translational perspective AAV9-CMV-Bmi-1-RING1B could be used for translational gene therapy to ubiquitinate GATA4 and prevent GATA4-dependent SA-PCH. Also, the combined domains between Bmi-1-RING1B and GATA4 in aging cardiomyocytes could be therapeutic targets for identifying stapled peptides in clinical applications to promote the combination of Bmi-1-RING1B with GATA4 and the ubiquitination of GATA4 to prevent SA-PCH and heart failure. We found that degradation of cardiac GATA4 by Bmi-1 was mainly dependent on autophagy rather than proteasome, and autophagy agonists metformin and rapamycin could ameliorate the SA-PCH, suggesting that activation of autophagy with metformin or rapamycin could also be a promising method to prevent SA-PCH.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据