4.8 Article

Fabrication of physical and chemical crosslinked hydrogels for bone tissue engineering

期刊

BIOACTIVE MATERIALS
卷 12, 期 -, 页码 327-339

出版社

KEAI PUBLISHING LTD
DOI: 10.1016/j.bioactmat.2021.10.029

关键词

Different crosslinking conditions; Biomimetic hydrogel; Bone tissue engineering

资金

  1. National Key R&D Program of China [2018YFC2001500]
  2. National Natural Science Foundation of China [91749204, 82172098, 81771491, 81871099, 81972254]
  3. Shanghai Rising-Star Program [21QA1412000]

向作者/读者索取更多资源

Bone tissue engineering provides promising tools for the treatment of bone-related diseases using biomimetic hydrogels. This article discusses the fabrication of biomimetic hydrogels using thermal sensitive polymers, mineral ions, chemically triggered agents, photo crosslinking initiators, and enzyme triggers. These hydrogels accelerate bone regeneration and the article also highlights key factors influencing therapeutic effects.
Bone tissue engineering has emerged as a significant research area that provides promising novel tools for the preparation of biomimetic hydrogels applied in bone-related diseases (e.g., bone defects, cartilage damage, osteoarthritis, etc.). Herein, thermal sensitive polymers (e.g., PNIPAAm, Soluplus, etc.) were introduced into main chains to fabricate biomimetic hydrogels with injectability and compatibility for those bone defect need minimally invasive surgery. Mineral ions (e.g., calcium, copper, zinc, and magnesium), as an indispensable role in maintaining the balance of the organism, were linked with polymer chains to form functional hydrogels for accelerating bone regeneration. In the chemically triggered hydrogel section, advanced hydrogels crosslinked by different molecular agents (e.g., genipin, dopamine, caffeic acid, and tannic acid) possess many advantages, including extensive selectivity, rapid gel-forming capacity and tunable mechanical property. Additionally, photo crosslinking hydrogel with rapid response and mild condition can be triggered by different photoinitiators (e.g., I2959, LAP, eosin Y, riboflavin, etc.) under specific wavelength of light. Moreover, enzyme triggered hydrogels were also utilized in the tissue regeneration due to its rapid gel-forming capacity and excellent biocompatibility. Particularly, some key factors that can determine the therapy effect for bone tissue engineering were also mentioned. Finally, brief summaries and remaining issues on how to properly design clinical-oriented hydrogels were provided in this review.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据