4.8 Article

PVP-induced synergistic engineering of interlayer, self-doping, active surface and vacancies in VS4 for enhancing magnesium ions storage and durability

期刊

ENERGY STORAGE MATERIALS
卷 47, 期 -, 页码 211-222

出版社

ELSEVIER
DOI: 10.1016/j.ensm.2022.02.023

关键词

PVP incorporation; Self-doping; Vacancies engineering; High-index facets; Mg2+ and MgCl+ co-intercalation ; Magnesium ion batteries

资金

  1. National Natural Science Foundation of China [52072196, 52002199, 52002200, 52102106]
  2. Major Basic Research Program of Natural Science Foundation of Shandong Province [ZR2020ZD09]
  3. Natural Science Foundation of Shandong Province [ZR2019BEM042, ZR2020QE063]
  4. Innovation and Technology Program of Shandong Province [2020KJA004]
  5. Taishan Scholars Program of Shandong Province [ts201511034]

向作者/读者索取更多资源

In this study, PVP was innovatively incorporated with VS4 to improve the kinetic performance, cycling life, and specific capacities of magnesium-ion batteries. The novel design of PVP-VS4 exhibited long-term cycling stability and exceptional high-rate capability. The reaction kinetics and energy storage mechanism were further analyzed using experimental techniques and computational calculations.
Magnesium ions batteries (MIBs) provide great potential for the safety and large-scale energy storage, however, its inherent drawbacks, such as the sluggish kinetics, poor cycling life and lower specific capacities of cathode limit their practical application. Herein, PVP is innovatively incorporated with VS4 and induced synergistic engineering, including the enlarged interchain spacing, V3+ self-doping, rich sulfur vacancies and the selectively exposing active surface of (020) facets, which results in the fast kinetics of co-intercalation of Mg2+ and MgCl+, electrolyte infiltration, more active sites exposure, and the strain/stress relaxation during insertion/extraction process for the high stability of structure. Therefore, this novel design of PVP-VS4 exhibits long-term cycling stability (80% capacity retention at 5000 mA g(-1) after 1500 cycles) and exceptional high-rate capability (140 mAh g(-1) at 50 mA g(-1) with 45 mAh g(-1) at 5000 mA g(-1)). The fast reaction kinetics is further confirmed by galvanostatic intermittent titration technique (GITT) and density functional theory (DFT) computations. In addition, the energy storage mechanism and desirable pseudocapacitive behaviors are elucidated through series of ex situ investigations and pesudocapaticance-like contribution analysis. And PVP-VS4 delivers the higher anti-self-discharge capability cause by PVP incorporation. PVP-induced synergistic engineering opens up a new opportunity for designing a variety of effective intercalation host materials for next-generation energy storage.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据