4.8 Article

Highly efficient CsPbI3/Cs1-xDMAxPbI3 bulk heterojunction perovskite solar cell

相关参考文献

注意:仅列出部分参考文献,下载原文获取全部文献信息。
Article Chemistry, Multidisciplinary

Rational Surface-Defect Control via Designed Passivation for High-Efficiency Inorganic Perovskite Solar Cells

Xiaojing Gu et al.

Summary: Iodine vacancies and undercoordinated Pb2+ are the main causes of nonradiative charge recombination in all-inorganic perovskite films, while passivation with histamine (HA) significantly reduces surface trap density and prolongs charge lifetime, leading to an increased solar cell efficiency.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2021)

Review Chemistry, Physical

Mechanisms and Suppression of Photoinduced Degradation in Perovskite Solar Cells

Jing Wei et al.

Summary: Solar cells based on metal halide perovskites have high efficiency but suffer from photoinduced degradation mechanisms, including phase segregation or chemical decomposition in organic-inorganic perovskites, introduction of defects by oxide electron transport layers, and poor photostability of small molecules-based hole transport layers. Improvement in stability is needed for future optimization of relevant devices.

ADVANCED ENERGY MATERIALS (2021)

Article Chemistry, Physical

D-A-π-A-D-type Dopant-free Hole Transport Material for Low-Cost, Efficient, and Stable Perovskite Solar Cells

Tianqi Niu et al.

Summary: The development of low-cost and efficient hole transport materials (HTMs) is crucial for commercialization of perovskite solar cells (PSCs). DTB-FL with a D-A-pi-A-D molecular design shows promise in achieving high efficiencies and stability in PSCs, as it features excellent optoelectronic properties and efficient surface passivation effects.
Article Chemistry, Physical

Efficient and Stable Graded CsPbI3-xBrx Perovskite Solar Cells and Submodules by Orthogonal Processable Spray Coating

Jin Hyuck Heo et al.

Summary: In this study, inorganic CsPbI2Br-based perovskite thin films with a well-defined CsPbI3-xBrx composition gradient were fabricated using a scalable and orthogonal processable spray-coating approach. The graded structure broadened the absorption wavelength range, increased carrier lifetime, and improved charge separation and collection efficiency within a device stack. The power conversion efficiency reached 16.81% for a 0.096-cm(2) PSC, and a monolithically integrated perovskite sub-module achieved an efficiency of 13.82% with less than 9% degradation over 1,000 hours of continuous 1-sun light soaking.
Article Multidisciplinary Sciences

Efficient perovskite solar cells via improved carrier management

Jason J. Yoo et al.

Summary: Metal halide perovskite solar cells have shown great potential to disrupt the silicon solar cell market with their improved performance, yet still face limitations in light-harvesting due to charge carrier recombination. Efforts to enhance charge carrier management offer a path to increase device performance and approach the theoretical efficiency limit of PSCs.

NATURE (2021)

Article Chemistry, Multidisciplinary

Inorganic Ammonium Halide Additive Strategy for Highly Efficient and Stable CsPbI3 Perovskite Solar Cells

Shan Tan et al.

Summary: The study introduces an inorganic additive strategy using ammonium halides to improve crystal quality, interfacial contact, and charge transport ability of CsPbI3 films, resulting in high-efficiency solar cell performance. Long-term stability testing shows the promising potential and advantages of this approach.

ADVANCED FUNCTIONAL MATERIALS (2021)

Article Chemistry, Multidisciplinary

Efficient (>20 %) and Stable All-Inorganic Cesium Lead Triiodide Solar Cell Enabled by Thiocyanate Molten Salts

Bingcheng Yu et al.

Summary: By developing a UAT molten salt modification strategy, high-quality CsPbI3 films have been successfully deposited with significantly improved crystal quality, leading to a cell efficiency of over 20% and excellent stability over 1000 hours. These results demonstrate a promising development route for CsPbI3-related photoelectric devices.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2021)

Article Chemistry, Multidisciplinary

Efficient and Stable CsPbI3 Inorganic Perovskite Photovoltaics Enabled by Crystal Secondary Growth

Xingtao Wang et al.

Summary: This study demonstrates defect compensation in CsPbI3 perovskite through crystal secondary growth induced by a solid-state reaction, resulting in highly efficient inorganic photovoltaics. The secondary growth process involving a bromine salt can heal defects, improve charge dynamics, enhance phase stability, and deliver a solar cell efficiency of 20.04% with excellent operational stability.

ADVANCED MATERIALS (2021)

Article Chemistry, Multidisciplinary

Multifunctional Crosslinking-Enabled Strain-Regulating Crystallization for Stable, Efficient α-FAPbI3-Based Perovskite Solar Cells

Hengkai Zhang et al.

Summary: By introducing the in situ crosslinking-enabled strain-regulating crystallization (CSRC) method with trimethylolpropane triacrylate (TMTA), the tensile strain and grain size of perovskite solar cells (PSCs) based on alpha-Formamidinium lead triiodide (alpha-FAPbI(3)) were successfully regulated, leading to significantly enhanced performance. The CSRC approach not only improved power conversion efficiency (PCE), but also ensured outstanding device stability under both long-term storage and light soaking conditions.

ADVANCED MATERIALS (2021)

Review Chemistry, Multidisciplinary

Single Crystal Perovskite Solar Cells: Development and Perspectives

Xiao Cheng et al.

ADVANCED FUNCTIONAL MATERIALS (2020)

Article Chemistry, Physical

How to Report Record Open-Circuit Voltages in Lead-Halide Perovskite Solar Cells

Lisa Krueckemeier et al.

ADVANCED ENERGY MATERIALS (2020)

Article Chemistry, Multidisciplinary

Tailored Amphiphilic Molecular Mitigators for Stable Perovskite Solar Cells with 23.5% Efficiency

Hongwei Zhu et al.

ADVANCED MATERIALS (2020)

Article Chemistry, Physical

Chemical Composition and Phase Evolution in DMAI-Derived Inorganic Perovskite Solar Cells

Hongguang Meng et al.

ACS ENERGY LETTERS (2020)

Article Chemistry, Multidisciplinary

Printable CsPbI3Perovskite Solar Cells with PCE of 19% via an Additive Strategy

Xiaoming Chang et al.

ADVANCED MATERIALS (2020)

Review Chemistry, Multidisciplinary

Defect passivation strategies in perovskites for an enhanced photovoltaic performance

Lin Fu et al.

ENERGY & ENVIRONMENTAL SCIENCE (2020)

Article Multidisciplinary Sciences

Strain engineering in perovskite solar cells and its impacts on carrier dynamics

Cheng Zhu et al.

NATURE COMMUNICATIONS (2019)

Article Multidisciplinary Sciences

Phase segregation due to ion migration in all-inorganic mixed-halide perovskite nanocrystals

Huichao Zhang et al.

NATURE COMMUNICATIONS (2019)

Article Chemistry, Multidisciplinary

Defect-Engineering-Enabled High-Efficiency All-Inorganic Perovskite Solar Cells

Jia Liang et al.

ADVANCED MATERIALS (2019)

Article Chemistry, Multidisciplinary

Investigation of Oxygen Passivation for High-Performance All-Inorganic Perovskite Solar Cells

Shun-Chang Liu et al.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2019)

Article Chemistry, Physical

Minimizing Voltage Loss in Wide-Bandgap Perovskites for Tandem Solar Cells

Manoj Jaysankar et al.

ACS ENERGY LETTERS (2019)

Article Chemistry, Physical

Scalable Ambient Fabrication of High-Performance CsPbI2Br Solar Cells

Yuanyuan Fan et al.

Review Chemistry, Multidisciplinary

Perovskite Solar Cells: From the Atomic Level to Film Quality and Device Performance

Michael Saliba et al.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2018)

Review Chemistry, Multidisciplinary

Impact of H2O on organic-inorganic hybrid perovskite solar cells

Jianbing Huang et al.

ENERGY & ENVIRONMENTAL SCIENCE (2017)

Article Chemistry, Physical

Phase Segregation Enhanced Ion Movement in Efficient Inorganic CsPbIBr2 Solar Cells

Wei Li et al.

ADVANCED ENERGY MATERIALS (2017)

Article Optics

Bulk heterojunction perovskite-PCBM solar cells with high fill factor

Chien-Hung Chiang et al.

NATURE PHOTONICS (2016)

Article Energy & Fuels

In situ observation of heat-induced degradation of perovskite solar cells

G. Divitini et al.

NATURE ENERGY (2016)

Article Energy & Fuels

Defects in perovskite-halides and their effects in solar cells

James M. Ball et al.

NATURE ENERGY (2016)

Article Chemistry, Multidisciplinary

Transformation of the Excited State and Photovoltaic Efficiency of CH3NH3PbI3 Perovskite upon Controlled Exposure to Humidified Air

Jeffrey A. Christians et al.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2015)