4.6 Review

Plasma-Surface Interactions Within Helicon Plasma Sources

期刊

FRONTIERS IN PHYSICS
卷 10, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fphy.2022.856221

关键词

helicon plasma; surface; erosion; sputtering; interactions

向作者/读者索取更多资源

This article discusses the physics and practical applications of helicon plasma sources, emphasizing the importance of understanding ion density distribution, induced surface potentials, and low-energy sputtering reactions for proper modeling and predicting performance.
Helicon plasma sources do not require electrodes or grids directly immersed in the plasma, and also present an axial magnetic field confining the plasma discharge. These factors are believed to provide them with long operational lifetimes because of the reduced potential for surface etching. The physics of helicon waves, cylindrical magnetized plasmas, sheaths, and plasma-surface interactions are discussed in the context of this claim. Practical implementation aspects are also reviewed, along with relevant experimental results. It is shown that understanding the distribution of ion density within the source, the presence of induced potentials in its surfaces, and the physics of low-energy sputtering reactions is essential to properly model erosion phenomena within helicons, and consequently predict their performance in practical applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据