4.6 Article

Finite-Size Scaling on a Digital Quantum Simulator Using Quantum Restricted Boltzmann Machine

期刊

FRONTIERS IN PHYSICS
卷 10, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fphy.2022.915863

关键词

finite-size scaling; quantum phase transition; quantum simulator; quantum restricted Boltzmann machine; quantum rabi model

向作者/读者索取更多资源

Finite-Size Scaling (FSS) analysis can determine the critical point and critical exponents for a phase transition. However, the traditional FSS method is not applicable for quantum phase transitions occurring in finite size systems. We propose an alternative method that truncates the system in the Hilbert space to calculate the critical point for quantum phase transitions.
The critical point and the critical exponents for a phase transition can be determined using the Finite-Size Scaling (FSS) analysis. This method assumes that the phase transition occurs only in the infinite size limit. However, there has been a lot of interest recently in quantum phase transitions occurring in finite size systems such as a single two-level system interacting with a single bosonic mode e.g., in the Quantum Rabi Model (QRM). Since these phase transitions occur at a finite system size, the traditional FSS method is rendered inapplicable for these cases. For cases like this, we propose an alternative FSS method in which the truncation of the system is done in the Hilbert space instead of the physical space. This approach has previously been used to calculate the critical parameters for stability and symmetry breaking of electronic structure configurations of atomic and molecular systems. We calculate the critical point for the quantum phase transition of the QRM using this approach. We also provide a protocol to implement this method on a digital quantum simulator using the Quantum Restricted Boltzmann Machine algorithm. Our work opens up a new direction in the study of quantum phase transitions on quantum devices.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据