4.7 Article

Transcriptomic Profiles of Splenic CD19+ B Cells in Mice Chronically Infected With the Larval Echinococcus granulosus

期刊

FRONTIERS IN VETERINARY SCIENCE
卷 9, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fvets.2022.848458

关键词

Echinococcus granulosus; protoscoleces; B cells; immune regulation; metabolic reprogramming; lipid metabolism

资金

  1. National Natural Science Foundation of China [81871670, 82002164]
  2. Natural Science Foundation of Jiangsu Province [BK20201459]
  3. Priority Academic Program Development of Jiangsu Higher Education Institutions
  4. Training Programs of Innovation and Entrepreneurship for College Students in Jiangsu Province [202010313077Y, 202010313036Z, 202010313008]

向作者/读者索取更多资源

This study found that larval E. granulosus infection induces metabolic reprogramming of B cells and revealed the interactions between genes associated with immune and metabolism.
Background: We previously reported that the larval Echinococcus granulosus (E. granulosus) infection can expand the population of regulatory B cells in mice, thereby inhibiting the anti-infective immunity. However, the underlying mechanism is still largely unknown. This study further investigated the holistic transcriptomic profiles of total splenic B cells following the chronic infection of the parasite. Methods: The infection model of larval E. granulosus was established by intraperitoneal inoculation with 2000 protoscolexes. Magnetic-Activated Cell Separation (MACS) was used to isolate the total splenic B cells. RNA sequencing was performed to screen the differentially expressed genes (DEGs) after infection. The expression of selected DEGs was verified using qRT-PCR. Gene Ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, and Co-expression network analysis were applied to predict these DEGs' underlying biological processes, pathways, and interactions respectively. Results: A total of 413 DEGs were identified in larval E. granulosus infected B cells, including 303 up- and 110 down-regulated genes. Notably, most DEGs related to inflammation and chemotaxis were significantly upregulated after infection. In line with these changes, significant expression upregulation of DEGs associated with fatty acid oxidation, lipid synthesis, lipolysis, lipid transport, and cholesterol biosynthesis, were observed in infected B cells. Co-expression network analysis showed an intimate interaction between these DEGs associated with immune and metabolism. Conclusions: The present study revealed that the larval E. granulosus infection induces metabolic reprogramming of B cells, which provides a novel clue to clarify the immunoregulatory mechanism of B cells in parasitic infection.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据