4.6 Article

Pore Structure Characteristics and Their Controlling Factors of Deep Shale: A Case Study of the Lower Silurian Longmaxi Formation in the Luzhou Area, Southern Sichuan Basin

期刊

ACS OMEGA
卷 7, 期 17, 页码 14591-14610

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsomega.1c06763

关键词

-

资金

  1. China National Science and Technology Major Project Shale Gas Seepage Law and Gas Reservoir Engineering Method [2017ZX05037-001]

向作者/读者索取更多资源

This study investigates the pore characteristics of deep shale in the LZ region of southern Sichuan using various methods. The results show that the pores can be classified into four categories and the total pore volume is dominated by mesopores. The factors that influence pore structure include buried depth, geochemical factors, and mineral composition.
Recently, deep shale reservoirs are emerging as time requires and commence occupying a significant position in the further development of shale gas. However, the understanding of pore characteristics in deep shale remains poor, prohibiting accurate estimation of the hydrocarbon content and insights into fluid mobility. This study focuses on the Longmaxi Formation from the Luzhou (LZ) region, southern Sichuan. Scanning electron microscopy (SEM), low-temperature N2/CO2 adsorption, X-ray diffraction, and geochemical analysis were performed to investigate the micro-nanopore size distribution, main controlling factors, and unique pore features distinct from other regions. Results showed that the pores can be classified into four categories, organic matter (OM) pores, intergranular pores, intragranular pores, and microfractures, according to SEM images. The total pore volume is overwhelmingly dominated by mesopores and contributed by pores in the range of 0.5-0.6, 2-4, and 10-30 nm. The specific surface area is primarily contributed by micropores and mesopores in the range of 0.5-0.7 and 2-4 nm. By analyzing the influencing factors extensively, it is concluded that the buried depth, geochemical factors, and mineral composition can impact the pore structure in the overmature deep shales. Specifically, the total organic carbon content plays a more effective and positive role in the development of micropores, mesopores, total pores, and the porosity when compared with vitreous reflectance (Ro). The micropores are inferred to be OM-related. On the contrary, clay mineral is detrimental to the development of micropores and mesopores and the petrophysical properties (porosity and permeability), which may be attributed to the occurrence of chlorite and kaolinite instead of illite. The plagioclase conforms to the same law as clay due to their coexistence. Quartz, carbonate minerals, and pyrite can barely contribute to the pores. Eventually, the compared results suggest that the Longmaxi Formation of the LZ region are qualified with a superior pore size distribution, complicated structure, and diverse morphology, implying a potential to generate and store hydrocarbons. Overall, this study improves the understanding of complex pore structures in deep shale and provides significant insights into the development and exploration of unconventional resources in the future.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据