4.5 Article

Phytochemistry, biological activities and in silico molecular docking studies of Oxalis pes-caprae L. compounds against SARS-CoV-2

期刊

出版社

ELSEVIER
DOI: 10.1016/j.jksus.2022.102136

关键词

Oxalis pes-caprae; Phytocompounds; Antioxidant; Antibacterial; Cytotoxicity; FTIR; Molecular docking; SARS CoV-2 Mpro

资金

  1. King Saud University, Riyadh, Saudi Arabia [RSP2022R457]

向作者/读者索取更多资源

The current study evaluated the phytochemicals and their potentials in Oxalis pes-caprae. The plant exhibited rich phenolic, flavonoid, alkaloid, and saponin contents, as well as significant antioxidative, antibacterial, and cytotoxic activities. Molecular docking analysis revealed that certain components of Oxalis pes-caprae showed good affinity with the SARS CoV-2 protein.
Phytochemicals are directly involved in therapeutic treatment or precursors to synthesize useful drugs. The current study was aimed to evaluate the phytocompounds and their biopotentials using methanolic and n-hexane extracts of various parts of Oxalis pes-caprae. For the phytochemical analysis, standard procedures were used, whereas Aluminum Chloride reagent and Follin-ciocalteau reagent methods were used to determine total flavonoid and phenolic contents. Radical scavenging DPPH, phosphomolybdenum reduction, and reducing power assays were used to assess antioxidative potentials. Antibacterial potential was determined by applying disc diffusion method while cytotoxicity was determined employing brine shrimp assay. FT-IR (Fourier-transform infrared) analysis was utilized to gather spectral information, while molecular docking tools were employed to look at how O. pes-caprae plant-based ligands interact with the target protein COVID-19 3CLPro (PDB:6LU7). Phenols, flavonoids, alkaloids and saponins were tested positive in preliminary phytochemical studies. TPC and TFC in different extracts ranging from (38.55 +/- 1.72) to (65.68 +/- 0.88) mg/g GAE/g and (24.75 +/- 1.80) to (14.83 +/- 0.92) mg/g QUE/g were used respectively. IC50 value (24.75 +/- 0.76 g/mL) by OXFH, total antioxidant capacity (55.89 +/- 1.75) mg/g by OXLM, reducing potential (34.98 +/- 1.089) mg/g by OXSM, maximum zone of inhibition against B. subtilis (24 +/- 0.65 mm) by OXLM and maximum cytotoxicity 96% with LD50 19.66 (lg/mL) by OXSM were the best calculated values among all extracts. Using molecular docking, it was found that Caeruleanone A, 20,40-Dihydroxy-200-(1-hydroxy-1-methylethyl) dihydrofuro [2,3-h] flavanone and Vadimezan demonstrated best affinity with the investigated SARS CoV-2 Mpro protein. This work provide justification about this plant as a source of effective phytochemicals and their potential against microbes could lead to development of biosafe drugs for the welfare of human being. In future, different in vitro and in vivo biological studies can be performed to further investigate its biomedical potentials. (C) 2022 The Author(s). Published by Elsevier B.V. on behalf of King Saud University.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据