4.7 Review

Benthic-Pelagic Coupling in the Oligotrophic Eastern Mediterranean: A Synthesis of the HYPOXIA Project Results

期刊

FRONTIERS IN MARINE SCIENCE
卷 9, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fmars.2022.886335

关键词

benthic-pelagic coupling; eutrophication; macrofauna; ecosystem health; ecosystem processes; phytoplankton

资金

  1. Greek General Secretariat for Research and Technology (GSRT) in the framework of the Operational Program Education and Lifelong Learning of the National Strategic Reference Framework (NSRF) - ARISTEIA II (HYPOXIA project) [5381]

向作者/读者索取更多资源

The HYPOXIA project investigated the ecological processes of eutrophication and its potential irreversible changes in the eastern Mediterranean marine ecosystems. The project found that nutrient inputs in the water column can quickly lead to the bloom of specific species with high nutrient uptake capabilities. The coastal ecosystems in the region have shown high resilience to eutrophication.
Benthic-pelagic coupling studies have shown that the response of the benthic system to eutrophication is subject to complex nonlinear dynamics with specific thresholds beyond which abrupt changes in the response of the ecosystem occur and time lags between inputs and responses. The HYPOXIA: Benthic-pelagic coupling and regime shifts project aimed to investigate how nutrient input in the water column results in ecological processes of eutrophication, which may lead to significant, irreversible changes in the eastern Mediterranean marine ecosystems within a short period of time. The project included analysis of historical water and benthic data, field sampling, and mesocosm experiments. From the project results, it can be concluded that nutrient inputs are quickly capitalized by small phytoplankton species in the water column resulting in the bloom of specific species with high nutrient uptake capabilities. When Eutrophic Index values (calculated using nutrient and chlorophyll-a concentrations) cross the moderate-to-poor threshold, the precipitating organic matter can cause observable effects on the benthic system. Depending on eutrophication intensity and persistence, the effects can start from microbenthos, meiofauna, and macrofauna increase in abundance and biomass to significant changes in the community structure. The latter includes the proliferation of macrofaunal opportunistic species, an increase in deposit feeders, and the high risk of ecosystem quality degradation. However, contrary to other regions of the world, no water hypoxia or benthic dead zones were observed as chlorophyll-a and O-2 concentrations showed a positive correlation. This is caused by the high photosynthetic activity of the phytoplankton and microphytobenthos, the increased bioturbation of macrofauna, and the increased abundance of sediment deposit-feeding species, which quickly consume the excess organic matter. Eastern Mediterranean coastal ecosystems show high resilience to the adverse effects of eutrophication, preventing hypoxia and azoic conditions when eutrophication is the only source of environmental disturbance.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据