4.6 Article

Untargeted Metabolomics Reveals the Effect of Selective Breeding on the Quality of Chicken Meat

期刊

METABOLITES
卷 12, 期 5, 页码 -

出版社

MDPI
DOI: 10.3390/metabo12050367

关键词

metabolomics; selection; meat quality; skeletal muscle

资金

  1. National Key R&D Programof China [2021YFD1300100]
  2. Guangxi Key RD Program
  3. Revitalization Program of Biological Breeding of Jiangsu Province [JBGS [2021] 109]

向作者/读者索取更多资源

This study used LC-MS/MS metabolomics to investigate the effect of selective breeding on metabolites in different tissues of Guangxi Partridge chickens. The results showed that selective breeding indeed affected the metabolism of skeletal muscles, and the affected pathways were mainly focused on glycerophospholipid metabolism, amino sugars and nucleotide sugar metabolism.
The selection for improved body weight is an effective approach in animal breeding. Guangxi Partridge chickens have differentiated into two lines under selective breeding, which include line S and line D that have shown statistically significant differences in body weight. However, the meat quality analysis in our study indicated that the quality of breast and thigh muscles in line S chickens changed, which included increased values of L*, b*, and drip loss and decreased a* value, pH, and shear force in skeletal muscles. To illuminate the effect of selection on skeletal muscles, LC-MS/MS metabolomics was performed to explore differentiated metabolites in divergent tissues from the two chicken lines. The results of principal component analysis and orthogonal projection to latent structures discriminant analysis suggested that metabolites of different groups were separated, which suggested that selective breeding certainly affected metabolism of skeletal muscles. KEGG analysis identified that valine, leucine, and isoleucine biosynthesis, glycerophospholipid metabolism, and glutathione metabolism noteworthily changed in breast muscle. Amino sugars and nucleotide sugar metabolism, ascorbate and aldarate metabolism, the pentose phosphate pathway, pentose and glucuronate interconversions, fructose and mannose metabolism, and glycerophospholipid metabolism were remarkedly identified in thigh muscle. These screened pathways suggested oxidative stress in breast and thigh muscles, which corresponded with our previous results. Therefore, this study determined that glycerophospholipid metabolism conservatively functioned in muscle flavor and development but exhibited different anti-oxidative patterns in different skeletal muscles. Overall, the present study identified several differentiated metabolites and pathways for exploring differences in meat quality between different broiler populations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据