4.7 Article

Optimum configuration of a metal foam layer for a fast thermal charging energy storage unit: A numerical study

期刊

JOURNAL OF ENERGY STORAGE
卷 48, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.est.2021.103950

关键词

Melting heat transfer; Thermal energy storage; Metal foam; Optimization

资金

  1. Australian Government through University of New South Wales

向作者/读者索取更多资源

In this study, the melting heat transfer of capric acid Phase Change Material (PCM) in a thermal energy storage (TES) unit was numerically analyzed. The use of Cu nanoparticles and copper foam improved the charging time of the TES. Through optimization of the porous layer and the volume fraction of nanoparticles, a significant reduction in charging time was achieved.
The melting heat transfer of capric acid Phase Change Material (PCM) was numerically addressed in a channel shape Thermal Energy Storage (TES) unit. A combination of Cu nanoparticles and copper foam was used to improve the charging time of TES. A fixed amount of copper foam was applied to improve the heat transfer rate. The enthalpy-porosity approach, along with the finite element method, was used to simulate the free-convection melting heat transfer of composite PCM in the TES unit. Automatic time-step control and mesh adaptation technique were used to ensure the accuracy and convergence of the numerical solution. The porosity and the shape of the copper foam layer and volume fraction of nanoparticles were systematically optimized for minimum charging time using the Taguchi optimization approach. The results showed that a left right-hand triangle porous zone could lead to minimal charging time. The higher the porosity and volume fraction of nanoparticles, the lower the charging time. The combination of copper-foam, Cu nanoparticles, and optimum design of the porous layer reduced the melting time by three times. The optimal total charging time is reduced by 12.8% and 21.96% while changing the porous zone configuration from the RHT to REC and LHT.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据