4.7 Article

Magnetic field-assisted acceleration of energy storage based on microencapsulation of phase change material with CaCO3/Fe3O4 composite shell

期刊

JOURNAL OF ENERGY STORAGE
卷 47, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.est.2021.103574

关键词

Fe3O4; CaCO3 composite shell; Photothermal and magnetocaloric synergetic conversion; Latent heat-storage capacity; Magnetic phase-change microcapsules; Magnetism-assisted enhancement

资金

  1. National Natural Science Foundation of China [51903010, 51873010]
  2. Fundamental Research Funds for the Central Universities [buctrc202019]

向作者/读者索取更多资源

In this study, a magnetic phase-change microcapsule system was designed and synthesized to enhance solar light-to-heat conversion efficiency through the synergetic conversion of photothermal and magnetocaloric energy. The system exhibited high latent-heat capacity and accelerated energy storage under an alternating magnetic field.
Energy conversion and storage are crucial for overcoming energy-shortage problems. Herein, we designed and synthesized a type of magnetic phase-change microcapsule system for enhancing solar light-to-heat conversion efficiency through the synergetic conversion of photothermal and magnetocaloric energy. This microcapsule system was based on an n-eicosane core and a Fe3O4/CaCO3 composite shell and fabricated by means of a Pickering emulsion-templated in-situ precipitation technique. The composite microcapsules so obtained exhibit a regular spherical morphology and a well-defined core-shell microstructure, together with the desired chemical compositions and magnetic characteristics. The introduction of Fe3O4 nanoparticles enhanced the stability of the emulsion-templating system, resulting in an improvement in the phase-change enthalpies of the resultant composite microcapsules. Moreover, the presence of Fe3O4 nanoparticles endowed the microcapsule system with magnetic characteristics to realize a photothermal and magnetocaloric synergetic conversion. The composite microcapsules achieved a satisfactory latent-heat capacity of over 110 J/g and high photothermal conversion efficiency of 86.4%. More importantly, the composite microcapsules developed in this work presented a remarkable accelerated period of energy storage by 47.5% under an alternating magnetic field compared to those without an applied magnetic field. This study provides a promising approach for the design and development of phase-change microcapsules with a magnetism-accelerated energy conversion capability for efficient utilization of solar energy.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据