4.6 Article

Identification, Biochemical Characterization, and Safety Attributes of Locally Isolated Lactobacillus fermentum from Bubalus bubalis (buffalo) Milk as a Probiotic

期刊

MICROORGANISMS
卷 10, 期 5, 页码 -

出版社

MDPI
DOI: 10.3390/microorganisms10050954

关键词

fermented milk; identification; Lactobacillus fermentum; probiotics; safety attributes

资金

  1. National Agricultural Research Center (NARC, Islamabad, Pakistan)

向作者/读者索取更多资源

This study identified locally isolated strains of Lactobacillus fermentum with potential probiotic properties, particularly NMCC-14 and NMCC-17 strains, which showed significant advantages in fermented milk products. The strains were found to be safe and nontoxic, making them beneficial supplements for the development of dairy products.
The demand of functional foods is on the rise, and researchers are trying to develop nutritious dairy products by using well-characterized strains of bacteria. In this study, we identified locally isolated strains of Lactobacillus fermentum from Bubalus bubalis (Nilli Ravi buffalo) milk and evaluated their potential as probiotics in food products like fermented milk. Fifteen Lactobacillus strains were initially isolated, and only four strains (NMCC-2, NMCC-14, NMCC-17, and NMCC-27) were examined for morphological and biochemical characterizations due to their ability of gas production in Durham tubes. Moreover, these strains were selected for further probiotic characterizations due to their extreme morphological resemblance with lactic acid bacteria for their antimicrobial activity, enzymatic potential, autoaggregation capability, hydrophobicity, and acid and bile tolerance. All selected isolates showed significant probiotic potential. However, NMCC-14 and NMCC-17 strains showed maximum probiotic potential. The isolates (NMCC-2, NMCC-14, NMCC-17, and NMCC-27) were identified as Lactobacillus fermentum utilizing 16S rRNA gene sequencing. The in vivo safety study of NMCC-14 (dose: 10(10) CFU/day/mice; 21 days, orally) showed no histological dysfunctions in a mouse model. Pathogenic bacterial enzymes reduced the beneficial bacterial load in the host gastrointestinal tract. These results suggest that the NMCC-14 strain is safe and can be potentially used as a probiotic. Moreover, fermented milk was prepared by using the NMCC-14 strain. The results revealed that NMCC-14 strain-based fermented milk had significantly (p < 0.05) higher protein content (4.4 +/- 0.06), water-holding capacity (WHC), and dynamic viscosity as compared to non-fermented milk. The results suggest that L. fermentum NMCC-14 is safe and nontoxic; hence, it can be a beneficial supplement to be used for the development of dairy products to be subjected to further clinical testing.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据