4.6 Article

Use of Whole-Genome Sequencing to Predict Mycobacterium tuberculosis Complex Drug Resistance from Early Positive Liquid Cultures

期刊

MICROBIOLOGY SPECTRUM
卷 10, 期 2, 页码 -

出版社

AMER SOC MICROBIOLOGY
DOI: 10.1128/spectrum.02516-21

关键词

drug-resistant tuberculosis; whole-genome sequencing; antimicrobial susceptibility testing; early positive liquid cultures

资金

  1. Shanghai Clinical Research Center for Infectious Disease (Tuberculosis) [19MC1910800]

向作者/读者索取更多资源

In this study, whole-genome sequencing (WGS) was used to predict drug resistance of Mycobacterium tuberculosis complex (MTBC) from early positive liquid cultures. The results show that WGS could be a promising method for predicting MTBC resistance.
Our objective was to evaluate the performance of whole-genome sequencing (WGS) from early positive liquid cultures for predicting Mycobacterium tuberculosis complex (MTBC) drug resistance. Clinical isolates were obtained from tuberculosis patients at Shanghai Pulmonary Hospital (SPH). Antimicrobial susceptibility testing (AST) was performed, and WGS from early Bactec mycobacterial growth indicator tube (MGIT) 960-positive liquid cultures was performed to predict the drug resistance using the TB-Profiler informatics platform. A total of 182 clinical isolates were enrolled in this study. Using phenotypic AST as the gold standard, the overall sensitivity and specificity for WGS were, respectively, 97.1% (89.8 to 99.6%) and 90.4% (83.4 to 95.1%) for rifampin, 91.0% (82.4 to 96.3%) and 95.2% (89.1 to 98.4%) for isoniazid, 100.0% (89.4 to 100.0%) and 87.3% (80.8 to 92.1%) for ethambutol, 96.6% (88.3 to 99.6%) and 61.8% (52.6 to 70.4%) for streptomycin, 86.8% (71.9 to 95.6%) and 95.8% (91.2 to 98.5%) for moxifloxacin, 865% (71.2 to 91.5%) and 95.2% (90.3 to 98.0%) for ofloxacin, 100.0% (54.1 to 100.0%) and 67.6% (60.2 to 74.5%) for amikacin, 100.0% (63.1 to 100.0%) and 67.2% (59.7 to 74.2%) for kanamycin, 62.5% (24.5 to 915%) and 885% (82.8 to 92.8%) for ethionamide, 33.3% (4.3 to 77.7%) and 98.3% (95.1 to 99.7%) for para-aminosalicylic acid, and 0.0% (0.0 to 12.3%) and 100.0% (97.6 to 100.0%) for cycloserine. The concordances of WGS-based AST and phenotypic AST were as follows: rifampin (92.9%), isoniazid (93.4%), ethambutol (89.6%), streptomycin (73.1%), moxifloxacin (94.0%), ofloxacin (93.4%), amikacin (68.7%), kanamycin (68.7%), ethionamide (87.4%), para-aminosalicylic acid (96.2%) and cycloserine (84.6%). We conclude that WGS could be a promising approach to predict MTBC resistance from early positive liquid cultures. IMPORTANCE In this study, we used whole-genome sequencing (WGS) from early positive liquid (MGIT) cultures instead of solid cultures to predict drug resistance of 182 Mycobacterium tuberculosis complex (MTBC) clinical isolates to predict drug resistance using the TB-Profiler informatics platform. Our study indicates that WGS may be a promising method for predicting MTBC resistance using early positive liquid cultures.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据