4.7 Article

Enhancement of Methane Catalysis Rates in Methylosinus trichosporium OB3b

期刊

BIOMOLECULES
卷 12, 期 4, 页码 -

出版社

MDPI
DOI: 10.3390/biom12040560

关键词

active sites; docking; methanotrophs; mutation; OB3b; pMMO

资金

  1. National Science Foundation [1736255]
  2. Office Of The Director
  3. Office of Integrative Activities [1736255] Funding Source: National Science Foundation

向作者/读者索取更多资源

By modeling and docking experiments, the active sites and the impact of mutants on methane oxidation rates in particulate methane monooxygenase (pMMO) were determined.
Particulate methane monooxygenase (pMMO), a membrane-bound enzyme having three subunits (alpha, beta, and gamma) and copper-containing centers, is found in most of the methanotrophs that selectively catalyze the oxidation of methane into methanol. Active sites in the pMMO of Methylosinus trichosporium OB3b were determined by docking the modeled structure with ethylbenzene, toluene, 1,3-dibutadiene, and trichloroethylene. The docking energy between the modeled pMMO structure and ethylbenzene, toluene, 1,3-dibutadiene, and trichloroethylene was -5.2, -5.7, -4.2, and -3.8 kcal/mol, respectively, suggesting the existence of more than one active site within the monomeric subunits due to the presence of multiple binding sites within the pMMO monomer. The evaluation of tunnels and cavities of the active sites and the docking results showed that each active site is specific to the radius of the substrate. To increase the catalysis rates of methane in the pMMO of M. trichosporium OB3b, selected amino acid residues interacting at the binding site of ethylbenzene, toluene, 1,3-dibutadiene, and trichloroethylene were mutated. Based on screening the strain energy, docking energy, and physiochemical properties, five mutants were downselected, B:Leu3lSer, B:Phe96Gly, B:Phe92Thr, B:Trp106Ala, and B:Tyr110Phe, which showed the docking energy of -6.3, -6.7, -6.3, -6.5, and -6.5 kcal/mol, respectively, as compared to the wild type (-5.2 kcal/mol) with ethylbenzene. These results suggest that these five mutants would likely increase methane oxidation rates compared to wild-type pMMO.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据