4.7 Article

Design of a Multi-Epitope Vaccine against Tropheryma whipplei Using Immunoinformatics and Molecular Dynamics Simulation Techniques

期刊

VACCINES
卷 10, 期 5, 页码 -

出版社

MDPI
DOI: 10.3390/vaccines10050691

关键词

Tropheryma whipplei; biophysical approaches; immunoinformatic; TLR-4

资金

  1. King Saud University, Riyadh, Saudi Arabia [RSP2022R491]

向作者/读者索取更多资源

This study aimed to design a chimeric peptide vaccine against T. whipplei using computational methods. Four immunodominant epitopes were identified, covering 89.03% of the global population. Further experimental testing is needed to evaluate the vaccine's potential for protective and targeted immunogenicity.
Whipple's disease is caused by T. whipplei, a Gram-positive pathogenic bacterium. It is considered a persistent infection affecting various organs, more likely to infect males. There is currently no licensed vaccination available for Whipple's disease; thus, the development of a chimeric peptide-based vaccine against T. whipplei has the potential to be tremendously beneficial in preventing Whipple's disease in the future. The present study aimed to apply modern computational approaches to generate a multi-epitope-based vaccine that expresses antigenic determinants prioritized from the core proteome of two T. whipplei whole proteomes. Using an integrated computational approach, four immunodominant epitopes were found from two extracellular proteins. Combined, these epitopes covered 89.03% of the global population. The shortlisted epitopes exhibited a strong binding affinity for the B- and T-cell reference set of alleles, high antigenicity score, nonallergenic nature, high solubility, nontoxicity, and excellent binders of DRB1*0101. Through the use of appropriate linkers and adjuvation with a suitable adjuvant molecule, the epitopes were designed into a chimeric vaccine. An adjuvant was linked to the connected epitopes to boost immunogenicity and efficiently engage both innate and adaptive immunity. The physiochemical properties of the vaccine were observed favorable, leading toward the 3D modeling of the construct. Furthermore, the vaccine's binding confirmation to the TLR-4 critical innate immune receptor was also determined using molecular docking and molecular dynamics (MD) simulations, which shows that the vaccine has a strong binding affinity for TLR4 (-29.4452 kcal/mol in MM-GBSA and -42.3229 kcal/mol in MM-PBSA). Overall, the vaccine described here has a promising potential for eliciting protective and targeted immunogenicity, subject to further experimental testing.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据