4.7 Article

Biosynthesis of Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) From Glucose by Escherichia coli Through Butyryl-CoA Formation Driven by Ccr-Emd Combination

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fbioe.2022.888973

关键词

metabolic engineering; poly(3-hydroxybutyrate-co-3-hydroxyhexanoate); polyhydroxyalkanoates; Escherichia coli; reverse beta-oxidation

资金

  1. JST A-STEP (Adaptable and Seamless Technology Transfer Program through Target-driven RD) [AS2915157U]

向作者/读者索取更多资源

This study successfully introduced an artificial pathway for the biosynthesis of P(3HB-co-3HHx) into Escherichia coli, resulting in higher production and 3HHx composition by modifying genes and adding a phosphite oxidation system.
Poly[(R)-3-hydroxybutyrate-co-(R)-3-hydroxyhexanoate] [P(3HB-co-3HHx)] is a practical kind of bacterial polyhydroxyalkanoates (PHAs). A previous study has established an artificial pathway for the biosynthesis of P(3HB-co-3HHx) from structurally unrelated sugars in Ralstonia eutropha, in which crotonyl-CoA carboxylase/reductase (Ccr) and ethylmalonyl-CoA decarboxylase (Emd) are a key combination for generation of butyryl-CoA and the following chain elongation. This study focused on the installation of the artificial pathway into Escherichia coli. The recombinant strain of E. coli JM109 harboring 11 heterologous genes including Ccr and Emd produced P(3HB-co-3HHx) composed of 14 mol% 3HHx with 41 wt% of dry cellular weight from glucose. Further investigations revealed that the C-6 monomer (R)-3HHx-CoA was not supplied by (R)-specific reduction of 3-oxohexanoyl-CoA but by (R)-specific hydration of 2-hexenoyl-CoA formed through reverse beta-oxidation after the elongation from C-4 to C-6. While contribution of the reverse beta-oxidation to the conversion of the C-4 intermediates was very limited, crotonyl-CoA, a precursor of butyryl-CoA, was generated by dehydration of (R)-3HB-CoA. Several modifications previously reported for enhancement of bioproduction in E. coli were examined for the copolyester synthesis. Elimination of the global regulator Cra or PdhR as well as the block of acetate formation resulted in poor PHA synthesis. The strain lacking RNase G accumulated more PHA but with almost no 3HHx unit. Introduction of the phosphite oxidation system for regeneration of NADPH led to copolyester synthesis with the higher cellular content and higher 3HHx composition by two-stage cultivation with phosphite than those in the absence of phosphite.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据