4.7 Review

Synthetic Biology Approaches for Improving Chemical Production in Cyanobacteria

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fbioe.2022.869195

关键词

CO2 fixation; cyanobacteria; photosynthesis; RuBisCO; CRISPR

资金

  1. National Science Foundation [CBET-1902014]

向作者/读者索取更多资源

Biological chemical production has become a promising renewable alternative to traditional petrochemical synthesis. Photosynthetic microorganisms capable of sequestering atmospheric carbon dioxide have gained significant attention in the field of metabolic engineering. However, the intrinsic limitations of carbon fixation and photosynthesis have led to slower growth and lower product titers compared to heterotrophic organisms. Efforts to improve photosynthetic microorganisms as renewable chemical production hosts have focused on rewiring carbon fixation and photosynthesis, investigating alternative carbon fixation pathways, installing sugar catabolism, exploring fast-growing photosynthetic species, and using synthetic biology tools such as CRISPR to alter metabolism.
Biological chemical production has gained traction in recent years as a promising renewable alternative to traditional petrochemical based synthesis. Of particular interest in the field of metabolic engineering are photosynthetic microorganisms capable of sequestering atmospheric carbon dioxide. CO2 levels have continued to rise at alarming rates leading to an increasingly uncertain climate. CO2 can be sequestered by engineered photosynthetic microorganisms and used for chemical production, representing a renewable production method for valuable chemical commodities such as biofuels, plastics, and food additives. The main challenges in using photosynthetic microorganisms for chemical production stem from the seemingly inherent limitations of carbon fixation and photosynthesis resulting in slower growth and lower average product titers compared to heterotrophic organisms. Recently, there has been an increase in research around improving photosynthetic microorganisms as renewable chemical production hosts. This review will discuss the various efforts to overcome the intrinsic inefficiencies of carbon fixation and photosynthesis, including rewiring carbon fixation and photosynthesis, investigating alternative carbon fixation pathways, installing sugar catabolism to supplement carbon fixation, investigating newly discovered fast growing photosynthetic species, and using new synthetic biology tools such as CRISPR to radically alter metabolism.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据