4.7 Article

Prolyl Isomerization-Mediated Conformational Changes Define ATR Subcellular Compartment-Specific Functions

期刊

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fcell.2022.826576

关键词

ATR; cis; trans prolyl isomerization; mass spectrometric protein footprinting; structure-function of ATR; mitochondrial ATR-tBid interaction; antiapoptosis; BH3-like domain; UV irradiation

资金

  1. National Institutes of Health [R01CA219342, R01GM127656]

向作者/读者索取更多资源

ATR is a PI3K-like kinase protein that plays different roles in the nucleus and mitochondria through isomerization-induced structural changes. This structural alteration defines the subcellular location and compartment-specific functions of ATR, and is essential for promoting cell survival and DNA damage responses.
ATR is a PI3K-like kinase protein, regulating checkpoint responses to DNA damage and replication stress. Apart from its checkpoint function in the nucleus, ATR actively engages in an antiapoptotic role at mitochondria following DNA damage. The different functions of ATR in the nucleus and cytoplasm are carried out by two prolyl isomeric forms of ATR: trans- and cis-ATR, respectively. The isomerization occurs at the Pin1 Ser428-Pro429 motif of ATR. Here, we investigated the structural basis of the subcellular location-specific functions of human ATR. Using a mass spectrometry-based footprinting approach, the surface accessibility of ATR lysine residues to sulfo-NHS-LC-biotin modification was monitored and compared between the cis- and the trans-isomers. We have identified two biotin-modified lysine residues, K459 and K469, within the BH3-like domain of cis-ATR that were not accessible in trans-ATR, indicating a conformational change around the BH3 domain between cis- and trans-ATR. The conformational alteration also involved the N-terminal domain and the middle HEAT domain. Moreover, experimental results from an array of complementary assays show that cis-ATR with the accessible BH3 domain was able to bind to tBid while trans-ATR could not. In addition, both cis- and trans-ATR can directly form homodimers via their C-terminal domains without ATRIP, while nuclear (trans-ATR) in the presence of ATRIP forms dimer-dimer complexes involving both N- and C-termini of ATR and ATRIP after UV. Structural characteristics around the Ser428-Pro429 motif and the BH3 domain region are also analyzed by molecular modeling and dynamics simulation. In support, cis conformation was found to be significantly more energetically favorable than trans at the Ser428-Pro429 bond in a 20-aa wild-type ATR peptide. Taken together, our results suggest that the isomerization-induced structural changes of ATR define both its subcellular location and compartment-specific functions and play an essential role in promoting cell survival and DNA damage responses.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据