4.7 Article

Efficient Multidimensional Dynamic Programming-Based Energy Management Strategy for Global Composite Operating Cost Minimization for Fuel Cell Trams

期刊

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TTE.2021.3120425

关键词

Fuel cells; Fuels; Energy management; Topology; Hydrogen; Costs; Degradation; Dynamic programming (DP); energy management; fuel cell; hydrogen

资金

  1. National Natural Science Foundation [51977181, 52077180]
  2. Fok Ying-Tong Education Foundation of China [171104]

向作者/读者索取更多资源

This article proposes a global composite operating cost minimization strategy (CMS), considering both fuel consumption and depreciation of fuel cell purchase cost, and solves the optimal control trajectory using computationally efficient multidimensional dynamic programming (EMDP). Comparative tests with traditional methods are conducted on a hardware-in-the-loop platform. The results show that the EMDP algorithm improves computation efficiency and the CMS strategy reduces operating costs and extends the lifetime of fuel cells.
Energy management is key to improve the performance of hybrid system. At present, the global optimization-based energy management strategy (EMS) is considered to have the best optimization effect under a known operating condition. However, the traditional global optimization-based EMS is often very time-consuming, which brings great inconvenience to debug and obtain the optimal result. Besides, in the literature, most works still introduce only the fuel consumption into the objective function while failing to consider the durability of fuel cells. In order to make up for these shortcomings, based on the modeling of hybrid system, this article first proposes a global composite operating cost minimization strategy (CMS) both considering fuel consumption and depreciation of purchase cost of fuel cells. Then, this article proposes computationally efficient multidimensional dynamic programming (EMDP) to resolve the optimal control trajectory of the studied issue. Finally, based on the hardware-in-the-loop platform, this article carries out comparative tests of the proposed EMDP algorithm and CMS strategy with traditional ones. Results show that the EMDP algorithm can effectively speed up the computation compared with the traditional dynamic programming. Besides, the proposed CMS strategy would lead to lower operating cost mainly by reducing the degradation cost of fuel cells so that the lifetime of fuel cells could also be extended.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据