4.6 Article

In Situ 3D Bioprinting Living Photosynthetic Scaffolds for Autotrophic Wound Healing

期刊

RESEARCH
卷 2022, 期 -, 页码 -

出版社

AMER ASSOC ADVANCEMENT SCIENCE
DOI: 10.34133/2022/9794745

关键词

-

资金

  1. National Key Research and Development Program of China [2020YFA0908200]
  2. National Natural Science Foundation of China [52073060, 61927805]
  3. Shenzhen Fundamental Research Program [JCYJ20190813152616459]
  4. China Postdoctoral Science Foundation [2021M700141]

向作者/读者索取更多资源

In this study, living photosynthetic scaffolds were created using an in situ microfluidic-assisted 3D bioprinting technique. These scaffolds, incorporating oxygenic photosynthesis microalgae, were able to produce sustainable oxygen under light illumination, promoting cell proliferation, migration, and differentiation. When directly applied to diabetic wounds, these scaffolds significantly accelerated wound closure by alleviating hypoxia, increasing angiogenesis, and promoting extracellular matrix synthesis, suggesting a promising therapeutic strategy for tissue engineering applications.
Three-dimensional (3D) bioprinting has been extensively explored for tissue repair and regeneration, while the insufficient nutrient and oxygen availability in the printed constructs, as well as the lack of adaptive dimensions and shapes, compromises the overall therapeutic efficacy and limits their further application. Herein, inspired by the natural symbiotic relationship between salamanders and algae, we present novel living photosynthetic scaffolds by using an in situ microfluidic-assisted 3D bioprinting strategy for adapting irregular-shaped wounds and promoting their healing. As the oxygenic photosynthesis unicellular microalga (Chlorella pyrenoidosa) was incorporated during 3D printing, the generated scaffolds could produce sustainable oxygen under light illumination, which facilitated the cell proliferation, migration, and differentiation even in hypoxic conditions. Thus, when the living microalgae-laden scaffolds were directly printed into diabetic wounds, they could significantly accelerate the chronic wound closure by alleviating local hypoxia, increasing angiogenesis, and promoting extracellular matrix (ECM) synthesis. These results indicate that the in situ bioprinting of living photosynthetic microalgae offers an effective autotrophic biosystem for promoting wound healing, suggesting a promising therapeutic strategy for diverse tissue engineering applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据