4.6 Article

Comparison of Knudsen Diffusion and the Dusty Gas Approach for the Modeling of the Freeze-Drying Process of Bulk Food Products

期刊

PROCESSES
卷 10, 期 3, 页码 -

出版社

MDPI
DOI: 10.3390/pr10030548

关键词

freeze-drying; drying of frozen particles; modeling; dusty gas model; improvement of mass transfer; internal porous structure

向作者/读者索取更多资源

A mathematical model is proposed to predict the heat and mass transfer behavior for freeze-drying of porous frozen food particles to optimize the process. The results suggest a strong correlation between pore size and particle porosity with drying kinetics.
Freeze-drying is generally used to achieve high quality products and preserve thermal sensitive components; however, it is also considered as a high energy and costly process. Modeling of the process can help to optimize the process to reduce these drawbacks. In this work, a mathematical model is presented to predict the heat and mass transfer behavior for freeze-drying of porous frozen food particles during freeze-drying to optimize the process. For the mass transfer, a comparison between Knudsen diffusion and the more complex dusty-gas approach is performed. Simulation results of a single particle are validated by experiments of single-layer drying to extend the usage of this model from a single particle to a particle bed. For the moisture transfer, adaption parameters are introduced and evaluated. A comparison shows a good agreement of the model with experimental results. The results furthermore suggest a strong correlation of the drying kinetics with pore size and particle porosity. An increase in the pore diameter strongly improves the overall mass transfer rates and hence is a suitable parameter for an effective increase of the drying rates in freeze-drying.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据