4.7 Article

Covalently grafting first-generation PAMAM dendrimers onto MXenes with self-adsorbed AuNPs for use as a functional nanoplatform for highly sensitive electrochemical biosensing of cTnT

期刊

MICROSYSTEMS & NANOENGINEERING
卷 8, 期 1, 页码 -

出版社

SPRINGERNATURE
DOI: 10.1038/s41378-022-00352-8

关键词

-

资金

  1. National Natural Science Foundation of China [31627801, 61901412]
  2. Science and Technology Project of Zhejiang Province [2019C03066, LGF19H180022]

向作者/读者索取更多资源

This study presents an effective strategy to modify MXene and overcome its limitations in biosensor setups. The modified MXene shows improved electrochemical performance and is applied to develop an immunosensor for detecting cardiac biomarkers.
2D MXene-Ti3C2Tx has demonstrated promising application prospects in various fields; however, it fails to function properly in biosensor setups due to restacking and anodic oxidation problems. To expand beyond these existing limitations, an effective strategy to for modifying the MXene by covalently grafting first-generation poly(amidoamine) dendrimers onto an MXene in situ (MXene@PAMAM) was reported herein. When used as a conjugated template, the MXene not only preserved the high conductivity but also conferred a specific 2D architecture and large specific surface areas for anchoring PAMAM. The PAMAM, an efficient spacer and stabilizer, simultaneously suppressed the substantial restacking and oxidation of the MXene, which endowed this hybrid with improved electrochemical performance compared to that of the bare MXene in terms of favorable conductivity and stability under anodic potential. Moreover, the massive amino terminals of PAMAM offer abundant active sites for adsorbing Au nanoparticles (AuNPs). The resulting 3D hierarchical nanoarchitecture, AuNPs/MXene@PAMAM, had advanced structural merits that led to its superior electrochemical performance in biosensing. As a proof of concept, this MXene@PAMAM-based nanobiosensing platform was applied to develop an immunosensor for detecting human cardiac troponin T (cTnT). A fast, sensitive, and highly selective response toward the target in the presence of a [Fe (CN)(6)](3-/4-) redox marker was realized, ensuring a wide detection of 0.1-1000 ng/mL with an LOD of 0.069 ng/mL. The sensor's signal only decreased by 4.38% after 3 weeks, demonstrating that it exhibited satisfactory stability and better results than previously reported MXene-based biosensors. This work has potential applicability in the bioanalysis of cTnT and other biomarkers and paves a new path for fabricating high-performance MXenes for biomedical applications and electrochemical engineering.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据