4.6 Article

Ag/Au Bimetallic Nanoparticles Trigger Different Cell Death Pathways and Affect Damage Associated Molecular Pattern Release in Human Cell Lines

期刊

CANCERS
卷 14, 期 6, 页码 -

出版社

MDPI
DOI: 10.3390/cancers14061546

关键词

bimetallic nanoparticles; apoptosis; pyroptosis; necroptosis; gold; silver

类别

向作者/读者索取更多资源

Nanoparticles composed of a gold and silver alloy can induce multiple cell death pathways, including necroptosis and pyroptosis, which have promising anticancer effects. These nanoparticles also trigger the release of danger signals, which may play a beneficial role in cancer.
Simple Summary Apoptosis is the goal of several therapeutic strategies for cancer. However, the apoptotic pathway is not always functional in many cancers and thus, alternative ways to destroy cancer cells are required. In this context, we investigated whether nanoparticles composed of a gold and silver alloy (AgAu NPs) can induce other programmed cell death pathways. These include necroptosis and pyroptosis, while their effects on the release of molecules that serve as danger signals, the damage associated molecular patterns (DAMPs) were also investigated. Our findings suggest that MDA-MB-231 cells, one of the cancer cell lines tested, experience mixed cell death (several cell death pathways are activated), while a second cell line, HCT116 cells, releases DAMPS. This is important, since necroptosis and pyroptosis have promising anticancer effects, while DAMPs trigger inflammation and current knowledge suggests a rather beneficial role in cancer. Apoptosis induction is a common therapeutic approach. However, many cancer cells are resistant to apoptotic death and alternative cell death pathways including pyroptosis and necroptosis need to be triggered. At the same time, danger signals that include HMGB1 and HSP70 can be secreted/released by damaged cancer cells that boost antitumor immunity. We studied the cytotoxic effects of AgAu NPs, Ag NPs and Au NPs with regard to the programmed cell death (apoptosis, necroptosis, pyroptosis) and the secretion/release of HSP70 and HMGB1. Cancer cell lines were incubated with 30, 40 and 50 mu g/mL of AgAu NPs, Ag NPs and Au NPs. Cytotoxicity was estimated using the MTS assay, and mRNA fold change of CASP1, CASP3, BCL-2, ZPB1, HMGB1, HSP70, CXCL8, CSF1, CCL20, NLRP3, IL-1 beta and IL-18 was used to investigate the associated programmed cell death. Extracellular levels of HMGB1 and IL-1 beta were investigated using the ELISA technique. The nanoparticles showed a dose dependent toxicity. Pyroptosis was triggered for LNCaP and MDA-MB-231 cells, and necroptosis for MDA-MB-231 cells. HCT116 cells experience apoptotic death and show increased levels of extracellular HMGB1. Our results suggest that in a manner dependent of the cellular microenvironment, AgAu NPs trigger mixed programmed cell death in P53 deficient MDA-MB-231 cells, while they also trigger IL-1 beta release in MDA-MB-231 and LNCaP cells and release of HMGB1 in HCT116 cells.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据