4.6 Article

Thermal Ablation of Liver Tumors Guided by Augmented Reality: An Initial Clinical Experience

期刊

CANCERS
卷 14, 期 5, 页码 -

出版社

MDPI
DOI: 10.3390/cancers14051312

关键词

augmented reality; three-dimensional (3D) reconstruction; interventional oncology; computed tomography; liver

类别

向作者/读者索取更多资源

This study reports the first clinical use of a new augmented reality guidance system called Endosight for percutaneous thermal ablations. The system showed high precision and reliability, with a targeting accuracy of 3.4 mm. The study demonstrates that augmented reality guidance can improve the accuracy and confidence of percutaneous thermal ablations.
Simple Summary We report the first clinical use of Endosight, a new guidance system for percutaneous interventional procedures based on augmented reality, to guide percutaneous thermal ablations. The new system was demonstrated to be precise and reliable, with a targeting accuracy of 3.4 mm. Clinically acceptable, rapid setup and procedural times can be achieved. Background: Over the last two decades, augmented reality (AR) has been used as a visualization tool in many medical fields in order to increase precision, limit the radiation dose, and decrease the variability among operators. Here, we report the first in vivo study of a novel AR system for the guidance of percutaneous interventional oncology procedures. Methods: Eight patients with 15 liver tumors (0.7-3.0 cm, mean 1.56 + 0.55) underwent percutaneous thermal ablations using AR guidance (i.e., the Endosight system). Prior to the intervention, the patients were evaluated with US and CT. The targeted nodules were segmented and three-dimensionally (3D) reconstructed from CT images, and the probe trajectory to the target was defined. The procedures were guided solely by AR, with the position of the probe tip was subsequently confirmed by conventional imaging. The primary endpoints were the targeting accuracy, the system setup time, and targeting time (i.e., from the target visualization to the correct needle insertion). The technical success was also evaluated and validated by co-registration software. Upon completion, the operators were assessed for cybersickness or other symptoms related to the use of AR. Results: Rapid system setup and procedural targeting times were noted (mean 14.3 min; 12.0-17.2 min; 4.3 min, 3.2-5.7 min, mean, respectively). The high targeting accuracy (3.4 mm; 2.6-4.2 mm, mean) was accompanied by technical success in all 15 lesions (i.e., the complete ablation of the tumor and 13/15 lesions with a >90% 5-mm periablational margin). No intra/periprocedural complications or operator cybersickness were observed. Conclusions: AR guidance is highly accurate, and allows for the confident performance of percutaneous thermal ablations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据