4.7 Article

Early life affects late-life health through determining DNA methylation across the lifespan: A twin study

期刊

EBIOMEDICINE
卷 77, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.ebiom.2022.103927

关键词

DNA methylation; Twin study; DOHaD hypothesis; Heritability

资金

  1. Victorian Cancer Agency
  2. Cancer Australia
  3. Cure Cancer Foundation

向作者/读者索取更多资源

This study investigates the lifespan contributions of DNA methylation variation and finds that early life strongly influences such variation, especially at heritable sites and sites relevant to gene expression regulation.
Background Previous findings for the genetic and environmental contributions to DNA methylation variation were for limited age ranges only. We investigated the lifespan contributions and their implications for human health for the first time. Methods 1,720 monozygotic twin (MZ) pairs and 1,107 dizygotic twin (DZ) pairs aged 0-92 years were included. Familial correlations (i.e., correlations between twins) for 353,681 methylation sites were estimated and modelled as a function of twin pair cohabitation history. Findings The methylome average familial correlation was around zero at birth (MZ pair:-0.01; DZ pair:-0.04), increased with the time of twins living together during childhood at rates of 0.16 (95%CI: 0.12-0.20) for MZ pairs and 0.13 (95%CI: 0.07-0.20) for DZ pairs per decade, and decreased with the time of living apart during adulthood at rates of 0.026 (95%CI: 0.019-0.033) for MZ pairs and 0.027 (95%CI: 0.011-0.043) for DZ pairs per decade. Neither the increasing nor decreasing rate differed by zygosity (both P > 0.1), consistent with cohabitation environment shared by twins, rather than genetic factors, influencing the methylation familial correlation changes. Familial correlations for 6.6% (23,386/353,681) sites changed with twin pair cohabitation history. These sites were enriched for high heritability, proximal promoters, and epigenetic/genetic associations with various early-life factors and late-life health conditions. Interpretation Early life strongly influences DNA methylation variation across the lifespan, and the effects are stronger for heritable sites and sites biologically relevant to the regulation of gene expression. Early life could affect late life health through influencing DNA methylation. eBioMedicine ebiom.2022.103927 Copyright (c) 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据