4.8 Article

Acoustofluidic black holes for multifunctional in-droplet particle manipulation

期刊

SCIENCE ADVANCES
卷 8, 期 13, 页码 -

出版社

AMER ASSOC ADVANCEMENT SCIENCE
DOI: 10.1126/sciadv.abm2592

关键词

-

资金

  1. National Natural Science Foundation of China [11974183]
  2. Zhejiang Provincial Natural Science Foundation of China [LR22C200006]
  3. National Science Foundation [CMMI-2104526]
  4. Duke University
  5. China Scholarship Council (CSC)

向作者/读者索取更多资源

Acoustofluidic black holes (AFBHs) are a technology that can slow down and capture acoustic waves, enabling versatile particle manipulation functionalities. This study fills the gap between acoustofluidics and acoustic black holes, leading to potential applications in various fields.
Acoustic black holes offer superior capabilities for slowing down and trapping acoustic waves for various applications such as metastructures, energy harvesting, and vibration and noise control. However, no studies have considered the linear and nonlinear effects of acoustic black holes on micro/nanoparticles in fluids. This study presents acoustofluidic black holes (AFBHs) that leverage controlled interactions between AFBH-trapped acoustic wave energy and particles in droplets to enable versatile particle manipulation functionalities, such as translation, concentration, and patterning of particles. We investigated the AFBH-enabled wave energy trapping and wavelength shrinking effects, as well as the trapped wave energy-induced acoustic radiation forces on particles and acoustic streaming in droplets. This study not only fills the gap between the emerging fields of acoustofluidics and acoustic black holes but also leads to a class of AFBH-based in-droplet particle manipulation toolsets with great potential for many applications, such as biosensing, point-of-care testing, and drug screening.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据