4.5 Article

Macular Vascular Imaging and Connectivity Analysis Using High-Resolution Optical Coherence Tomography

期刊

出版社

ASSOC RESEARCH VISION OPHTHALMOLOGY INC
DOI: 10.1167/tvst.11.6.2

关键词

high-resolution optical coherence tomography; macular blood flow; deep vascular complex

向作者/读者索取更多资源

The study characterizes macular blood flow connectivity in humans using high-resolution OCT, revealing a hybrid circuitry of blood flow in the parafoveal macula. This has implications for understanding the vascular structure and function in the macula region.
Purpose: To characterize macular blood flow connectivity in vivo using high-resolution perifoveal High Res OCT raster scans were performed on healthy participants. To mitigate the limitations of projection-resolved OCT-angiography, flow and structural data were used to observe the vascular structures of the superficial vascular complex (SVC) and the deep vascular complex. Vascular segmentation and rendering were performed using Imaris 9.5 software. Inflow and outflow patterns were classified according to vascular diameter and branching order from superficial arteries and veins, respectively. Results: Eight eyes from eight participants were included in this analysis, from which 422 inflow and 459 outflow connections were characterized. Arteries had direct arteriolar connections to the SVC (78%) and to the intermediate capillary plexus (ICP, 22%). Deep capillary plexus (DCP) inflow derived from small-diameter vessels succeeding ICP arterioles. The most prevalent outflow pathways coursed through superficial draining venules (74%). DCP draining venules ordinarily merged with ICP draining venules and drained independently of superficial venules in 21% of cases. The morphology of DCP draining venules in structural HighRes OCT is distinct from other vessels crossing the inner nuclear layer and can be used to identify superficial veins. Conclusions: Vascular connectivity analysis supports a hybrid circuitry of blood flow within the human parafoveal macula. Translational Relevance: Characterization of parafoveal macular blood flow connectivity in vivo using a precise segmentation of HighRes OCT is consistent with ground-truth microscopy studies and shows a hybrid circuitry.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据