4.6 Article

Time-dependent investigation of a mechanochemical synthesis of bismuth telluride-based materials and their structural and thermoelectric properties

期刊

ROYAL SOCIETY OPEN SCIENCE
卷 9, 期 3, 页码 -

出版社

ROYAL SOC
DOI: 10.1098/rsos.210714

关键词

thermoelectric; bismuth telluride; mechanical alloying; spark plasma sintering

向作者/读者索取更多资源

This study reports on the time dependence of a synthesis procedure for generating n- and p-type bismuth telluride-based materials. The method involves mechanical pre-reaction followed by field-assisted sintering and heat treatment. The resulting samples show good thermoelectric performance despite the short milling time.
Here, we report on the time dependence of a synthesis procedure for generation of both n- and p-type bismuth telluride-based materials. To initiate the reaction, the starting materials were first mechanical pre-reacted. The Rietveld refinements of X-ray diffraction (XRD) data collected after different milling times demonstrate that Bi2Te3 was formed after only 10 min, and longer milling times do not alter the composition. To complete the phase formation, the powders were treated by field-assisted sintering and heat treatment afterwards. The effect of this fast procedure on the structural and thermoelectric properties was investigated. Samples were obtained with relative densities above 99%. A clear preferred orientation of the crystallites in the samples is evidenced by Rietveld refinements of XRD data. The thermoelectric characteristics demonstrate a good performance despite the short milling time. Further, it was demonstrated for this fast synthesis that the physical transport properties can be varied with well-known n- and p-type dopants like CHI3 or Pb. For these non-optimized materials, a ZT value of 0.7 (n-type) and 0.9 (p-type) between 400 and 450 K was achieved. The long-term stability is demonstrated by repeated measurements up to 523 K showing no significant alteration of the thermoelectric performance.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据