4.7 Article

Development of nanocomposite based on hydroxyapatite/hematite/graphene oxide for medical applications

期刊

出版社

ELSEVIER
DOI: 10.1016/j.jmrt.2022.03.129

关键词

Saudi Arabia; Hematite; Graphene oxide; Hydroxyapatite; Antibacterial; Mechanical properties

资金

  1. Deanship of Scientific Research at King Khalid University [R.G.P.1/233/42]
  2. Taif University Researchers Supporting Project, Taif University, Taif, Saudi Arabia [TURSP-2020/157]
  3. Taif University, Taif, Saudi Arabia

向作者/读者索取更多资源

Developing bioceramics-based nanomaterials for scaffolding is still a challenge. In this study, a nanocomposite combining hydroxyapatite, hematite, and graphene oxide is fabricated to achieve antibacterial properties and improved mechanical properties. The nanocomposite exhibits enhanced surface roughness, increased microhardness, and enhanced antibacterial properties against Escherichia coli and Staphylococcus aureus.
Developing bioceramics-based nanomaterials for scaffolding is still a challenge. Three biocompatible materials are combined in one nanocomposite to fabricate antibacterial nanocomposite with higher mechanical properties. The nanocomposite contains hydroxyapatite (HAP), hematite (Fe2O3), and graphene oxide. The nanocomposite is examined chemically, structurally, and in vitro. The structural investigations showed a second minor phase with Fe2O3 which is FeO(OH). TEM investigated the shape morphology. There are two types of nanorods are detected which are small ones that belong to HAP, and long nanorods that belong to Fe2O3. Further, the nanosheets of GO are determined in addition to nano ellipsoids of FeOOH. The surface roughness is enhanced and Rq raised from 4.6 to 5.3 from pure HAP to HAP/Fe2O3/GO. The released ions rate of Fe3 thorn was constant for the first and second 12 h with a value of 2 ppm/h. The rate of Ca2 thorn decreased from 8 to 2.25 ppm/h for the first and second 12 h. Moreover, mechanical properties are enhanced and microhardness increased from 2.5 +/- 0.1 to 3.1 +/- 0.2 GPa. In addition, the shear modulus changed from 16.503 +/- 1 to 20.45 +/- 0.1 GPa. The antibacterial properties enhanced against Escherichia coli and Staphylococcus aureus and reached 16.5 +/- 0.5 and 17.2 +/- 0.7 mm without showing cytotoxicity toward the human osteoblast cells. (c) 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据