4.7 Article

Tuning the microstructure and mechanical properties of TiAl-based alloy through grain boundary engineering

期刊

出版社

ELSEVIER
DOI: 10.1016/j.jmrt.2022.05.023

关键词

TiAl-based alloy; Grain boundary engineering; Multidirectional isothermal forging; Grain boundary character distribution; Plasticity

资金

  1. National Natural Science Foundation of China [51474132]
  2. Fundamental ResearchFunds for the Central Universities [30919011412]
  3. PAPD
  4. Jiangsu Key Lab of Micro-Nano Materials and Technology

向作者/读者索取更多资源

Grain boundary character distribution (GBCD) in TiAl-based alloy was modified through multidirectional isothermal forging (MDIF) combined with annealing, resulting in enhanced room-temperature plasticity. The combination of MDIF and annealing at 1100 degrees C for 90 min promoted the formation of annealing twins and increased the fraction of low-SCSL boundaries, leading to the disruption of random boundary networks and improved plasticity in TiAl-based alloy.
In order to modify the room-temperature plasticity of TiAl-based alloy, grain boundary character distribution (GBCD) in TiAl-based alloy was tuned through multidirectional isothermal forging (MDIF) combined with annealing. The experimental results showed that MDIF provided appropriate driving force for the regeneration of the coincidence site lattice (CSL) boundaries through recovery and recrystallization process. Combination of MDIF and annealing at 1100 degrees C for 90 min promoted the formation of a large number of annealing twins and increased the fraction of low-SCSL boundaries to 65.88% and the ratio of (Sigma 9+Sigma 27)/Sigma 3 to 15.12%, which contributed to the disruption of random boundary networks and enhanced the room-temperature plasticity of the TiAl-based alloy. (C) 2022 The Author(s). Published by Elsevier B.V.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据