4.7 Article

Survival-Associated Metabolic Genes and Risk Scoring System in HER2-Positive Breast Cancer

期刊

FRONTIERS IN ENDOCRINOLOGY
卷 13, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fendo.2022.813306

关键词

HER2-positive breast cancer; metabonomics; prognostic risk scoring system; lasso cox regression analysis; survival prediction

资金

  1. National Natural Science Foundation of China [82174222]

向作者/读者索取更多资源

Using bioinformatics techniques, this study identified differentially expressed metabolic genes in patients with HER2-positive breast cancer and triple-negative breast cancer. Specific transcriptional changes in metabolism-related genes were found to be biomarkers for predicting patient prognosis, and a risk scoring system based on these genes showed higher predictive sensitivity than other clinical factors.
Human epidermal growth factor receptor 2 (HER2)-positive breast cancer and triple-negative breast cancer have their own genetic, epigenetic, and protein expression profiles. In the present study, based on bioinformatics techniques, we explored the prognostic targets of HER2-positive breast cancer from metabonomics perspective and developed a new risk score system to evaluate the prognosis of patients. By identifying the differences between HER2 positive and normal control tissues, and between triple negative breast cancer and normal control tissues, we found a large number of differentially expressed metabolic genes in patients with HER2-positive breast cancer and triple-negative breast cancer. Importantly, in HER2-positive breast cancer, decreased expression of metabolism-related genes ATIC, HPRT1, ASNS, SULT1A2, and HAL was associated with increased survival. Interestingly, these five metabolism-related genes can be used to construct a risk score system to predict overall survival (OS) in HER2-positive patients. The time-dependent receiver operating characteristic (ROC) curve analysis showed that the predictive sensitivity of the risk scoring system was higher than that of other clinical factors, including age, stage, and tumor node metastasis (TNM) stage. This work shows that specific transcriptional changes in metabolic genes can be used as biomarkers to predict the prognosis of patients, which is helpful in implementing personalized treatment and evaluating patient prognosis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据