4.7 Article

A light-emitting electrochemical artificial synapse with dual output of photoelectric signals

期刊

SCIENCE CHINA-MATERIALS
卷 65, 期 9, 页码 2511-2520

出版社

SCIENCE PRESS
DOI: 10.1007/s40843-021-2029-y

关键词

synaptic plasticity; photoelectric signals parallel output; light-emitting electrochemical artificial synapse; artificial neural network

资金

  1. National Natural Science Foundation of China [U21A20497, 61974029]
  2. Natural Science Foundation for Distinguished Young Scholars of Fujian Province [2020J06012]
  3. Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China [2021ZZ129]

向作者/读者索取更多资源

Although there has been remarkable progress in various synaptic devices, searching for artificial synapses with new functions is still crucial. This study introduces a light-emitting electrochemical artificial synapse (LEEAS) with dual output functionality, which can mimic synaptic plasticity and storage capabilities.
Despite recent remarkable progress in multiple synaptic devices, searching for artificial synapses with new functions is still an important task in the construction of artificial neural networks. The parallel output functionality of photoelectric signals in artificial synaptic devices is interesting and desirable as on-chip optoelectronic interconnection technology allows the connections between neurons weighted by current and light. In turn, it provides degrees of freedom and reduces circuit lead density in the design of large-scale neural networks. Hence, for the first time, a light-emitting electrochemical artificial synapse (LEEAS) based on poly[2-methoxy-5-(2'-ethylhexyloxy)-1,4-phenylene vinylene]/poly (ethylene oxide)/lithium salt blends with dual output of photoelectric signals was developed in this study. The electrochemical redox reaction enables the device to achieve synaptic plasticity in biology and emulate the memory enhancement process, high-pass filtering characteristic, and classical Pavlov's conditioned reflex experiment. In addition, the transient luminescence intensity of the LEEAS induced by identical electric spikes exhibits a synaptic-like potentiation behavior. Owing to the combination of electroluminescence (EL) and synaptic memory behavior, an LEEAS array exhibits a unique image display and storage functions that can memorize displayed images. The LEEAS proposed in this work enriches the diversity of artificial synapses, promoting the diversified design and development of next-generation optoelectronic hybrid artificial neural networks.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据