4.6 Article

Novel Starting Points for Human Glycolate Oxidase Inhibitors, Revealed by Crystallography-Based Fragment Screening

期刊

FRONTIERS IN CHEMISTRY
卷 10, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fchem.2022.844598

关键词

glycolate oxidase; glyoxylate metabolism; primary hyperoxaluria; fragment-based drug discovery; substrate reduction therapy

资金

  1. AbbVie [1097737]
  2. Bayer Pharma AG
  3. Boehringer Ingelheim
  4. Canada Foundation for Innovation
  5. Eshelman Institute for Innovation
  6. Genome Canada
  7. Innovative Medicines Initiative (EU/EFPIA) [115766]
  8. Janssen
  9. Merck Co
  10. Novartis Pharma AG
  11. Ontario Ministry of Economic Development and Innovation
  12. Pfizer
  13. Sao Paulo Research Foundation-FAPESP
  14. Takeda
  15. Wellcome Trust [092809/Z/10/Z]
  16. NDM Prize Studentship at the University of Oxford

向作者/读者索取更多资源

The study discovered six low-molecular-weight fragments that bind to different sites on the HAO1 structure, demonstrating their potential as inhibitors of HAO1.
Primary hyperoxaluria type I (PH1) is caused by AGXT gene mutations that decrease the functional activity of alanine:glyoxylate aminotransferase. A build-up of the enzyme's substrate, glyoxylate, results in excessive deposition of calcium oxalate crystals in the renal tract, leading to debilitating renal failure. Oxidation of glycolate by glycolate oxidase (or hydroxy acid oxidase 1, HAO1) is a major cellular source of glyoxylate, and siRNA studies have shown phenotypic rescue of PH1 by the knockdown of HAO1, representing a promising inhibitor target. Here, we report the discovery and optimization of six low-molecular-weight fragments, identified by crystallography-based fragment screening, that bind to two different sites on the HAO1 structure: at the active site and an allosteric pocket above the active site. The active site fragments expand known scaffolds for substrate-mimetic inhibitors to include more chemically attractive molecules. The allosteric fragments represent the first report of non-orthosteric inhibition of any hydroxy acid oxidase and hold significant promise for improving inhibitor selectivity. The fragment hits were verified to bind and inhibit HAO1 in solution by fluorescence-based activity assay and surface plasmon resonance. Further optimization cycle by crystallography and biophysical assays have generated two hit compounds of micromolar (44 and 158 mu M) potency that do not compete with the substrate and provide attractive starting points for the development of potent and selective HAO1 inhibitors.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据