4.5 Article

Electro-magnetohydrodynamic Flow of Biofluid Induced by Peristaltic Wave: A Non-newtonian Model

期刊

JOURNAL OF BIONIC ENGINEERING
卷 13, 期 3, 页码 436-448

出版社

SCIENCE PRESS
DOI: 10.1016/S1672-6529(16)60317-7

关键词

peristaltic transport; couple stress fluid; magnetohydrodynamics; electro-osmosis

向作者/读者索取更多资源

This article aims to develop a mathematical model for peristaltic transport of magnetohydrodynamic flow of biofluids through a micro-channel with rhythmically contracting and expanding walls under the influence of an applied electric field. The couple stress fluid model is considered to represent the non-Newtonian characteristics of biofluids. The velocity slip condition at the channel walls is taken into account because of the hydrophilic/hydrophobic interaction with negatively charged walls. The essential features of the electromagnetohydrodynamic flow of biofluid through micro-channels are clearly highlighted in the variations of the non-dimensional parameters of the physical quantities of interest such as the velocity, wall shear stress, pressure gradient, pressure rise per wave length, frictional force at the channel walls and the distribution of stream function. It reveals that the flow of biofluid is appreciably influenced by the sufficient strength of externally applied magnetic field and electro-osmotic parameter. The velocity slip condition reduces the frictional force at the channel wall. Moreover, the formation of the trapping bolus strongly depends on electro-osmotic parameter and magnetic field strength.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据