4.5 Article

Biomimetic Design of Oxidized Bacterial Cellulose-gelatin-hydroxyapatite Nanocomposites

期刊

JOURNAL OF BIONIC ENGINEERING
卷 13, 期 4, 页码 631-640

出版社

SCIENCE PRESS
DOI: 10.1016/S1672-6529(16)60334-7

关键词

bacterial cellulose; hydroxyapatite nanocomposite; gelatin; scaffold material

资金

  1. National Science Fund for Distinguished Young Scholars [51243006]

向作者/读者索取更多资源

Oxidized Bacterial Cellulose (OBC)-hydroxyapatite (HAp)-gelatin (Gel) nanocomposites were prepared by a biomimetic process. HAp nanocrystals were precipitated in a mixed solution of Na2HPO4 (pH 9.2) and Gel solution at 37 degrees C, and OBC was used to generate a three-dimensional (3D) network stent. The tensile strength of OBC-HAp-G was higher than 0.3 MPa, and the complete degradation time was approximately 90 d in Simulated Body Fluid (SBF). Fourier transform infrared spectroscopy demonstrated that a coordinate bond had formed possibly between HAp and the cellulose hydroxyl. X-ray diffraction showed that both the oxidation of bacterial cellulose and an increase in Gel content induced the formation of tiny HAp crystallites during composite fabrication. Specific surface area and porosity measurements indicated that a low Gel concentration contributed to retention of porous structure. The Ca and P contents on the surface of materials increased initially and then decreased with an increase in Gel content, as measured by energy dispersive spectroscopy. From the thermogravimetric data, the increase in decomposition temperature suggested the formation of chemical bonds among OBC, HAp, and Gel. The above results suggest that the OBC-HAp-G0.3 composite is a potential bone scaffold material.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据