4.6 Article

Regulation of Nrf2 and NF-κB activities may contribute to the anti-inflammatory mechanism of xylopic acid

期刊

INFLAMMOPHARMACOLOGY
卷 30, 期 5, 页码 1835-1841

出版社

SPRINGER BASEL AG
DOI: 10.1007/s10787-022-00950-y

关键词

HO-1 protein; Inflammation; NF-kappa B; Nrf2; VCAM-1; Xylopic acid

资金

  1. Society of Medicinal Plants and Natural Products Research

向作者/读者索取更多资源

Xylopic acid (XA), a kaurene diterpene found in African plants, has been shown to possess acute and chronic anti-inflammatory activities. This study investigates the potential molecular target(s) of XA, revealing an inhibitory effect on NF-kappa B activity and an increased activity of Nrf2, accompanied by changes in the expression of related proteins.
Xylopic acid (XA) is a kaurene diterpene which naturally exists in African plants such as Xylopia aethiopica. It has been established to exhibit acute and chronic anti-inflammatory activities from our earlier studies. This current work sets out to shed light on the potential molecular target(s) of xylopic acid. Selection of investigated targets (NF-kappa B, Nrf2 and PTP1B) was based on an unbiased approach, using the SPiDER in silico prediction tool, and a candidate approach, examining well-known anti-inflammatory targets. Reporter gene assays were used to test for altered NF-kappa B and Nrf2 activities in transfected HEK or CHO cells, respectively, and immunoblot and flow cytometric analyses examined protein expression of the Nrf2/NF-kB target genes HO-1 and VCAM-1 in HUVEC. An effect of XA on PTP1B activity assay was studied using an in vitro enzyme assay with recombinant human enzyme and pNPP as substrate as well as by looking at insulin receptor phosphorylation in HepG2 cells. XA at 30 mu M significantly (p < 0.001) inhibited the NF-kappa B-dependent reporter gene expression and enhanced activation of Nrf2 in a concentration-dependent manner when compared to the control. XA also marginally increased HO-1 protein expression levels while expression of VCAM-1 was reduced to 70% in XA-treated endothelial cells. However, XA did not show any sign of inhibition of PTP1B or a related phosphatase. Our findings suggest that the anti-inflammatory mechanism of XA entails the inhibitory effect on NF-kappa B and an increased activity of Nrf2, accompanied by increased expression of HO-1 and reduced expression of VCAM-1.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据