4.7 Article

Acetaminophen interacts with human hemoglobin: optical, physical and molecular modeling studies

期刊

JOURNAL OF BIOMOLECULAR STRUCTURE & DYNAMICS
卷 35, 期 6, 页码 1307-1321

出版社

TAYLOR & FRANCIS INC
DOI: 10.1080/07391102.2016.1180262

关键词

acetaminophen; human hemoglobin; spectroscopy; isothermal titration calorimetry; molecular modeling

资金

  1. University Grants Commission, Government of India [41-92/2012 (SR)]

向作者/读者索取更多资源

Acetaminophen, a widely used analgesic and antipyretic drug has ample affinity to bind globular proteins. Here, we have illustrated a substantive study pertaining to the interaction of acetaminophen with human hemoglobin (HHb). Different spectroscopic (absorption, fluorescence, and circular dichroism (CD) spectroscopy), calorimetric, and molecular docking techniques have been employed in this study. Acetaminophen-induced graded alterations in absorbance and fluorescence of HHb confirm their interaction. Analysis of fluorescence quenching at different temperature and data obtained from isothermal titration calorimetry indicate that the interaction is static and the HHb has one binding site for the drug. The negative values of Gibbs energy change (AG) and enthalpy changes (AH) and positive value of entropy change (AS) strongly suggest that it is entropy-driven spontaneous and exothermic reaction. The reaction involves hydrophobic pocket of the protein which is further stabilized by hydrogen bonding as evidenced from ANS and sucrose binding studies. These findings were also supported by molecular docking simulation study using AutoDock 4.2. The interaction influences structural integrity as well as functional properties of HHb as evidenced by CD spectroscopy, increased rate of co-oxidation and decreased esterase activity of HHb. So, from these findings, we may conclude that acetaminophen interacts with HHb through hydrophobic and hydrogen bonding, and the interaction perturbs the structural and functional properties of HHb.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据