4.6 Article

High-Performance n-Channel Printed Transistors on Biodegradable Substrate for Transient Electronics

期刊

ADVANCED ELECTRONIC MATERIALS
卷 8, 期 9, 页码 -

出版社

WILEY
DOI: 10.1002/aelm.202200098

关键词

biodegradable electronics; high-performance transistors; printed electronics; silicon nanoribbons; transfer printing; transient electronics

资金

  1. Engineering and Physical Sciences Research Council [EP/R029644/1, EP/R03480X/1]

向作者/读者索取更多资源

This study presents a method for fabricating high-performance transistors based on biodegradable metal foils, demonstrating stable device performance under various stress tests and showing potential for zero e-waste.
Innovative methods to fabricate and integrate biodegradable high-grade electronics on green substrates are needed for the next generation of robust high-performance transient electronics. This is also needed to alleviate the growing problem of electronic waste (e-waste). Herein, the authors present the n-channel silicon (Si) nanoribbons-based high-performance transistors developed on biodegradable metal (magnesium) foils using the direct transfer printing method. The developed transistors present high effective mobility of >600 cm(2) V-1 s(-1), high on/off current ratio (I-on/(off)) of >10(4), negligible hysteresis, transconductance of 0.19 mS, and an on-current of 1.6 mA at a bias of 2 V. Further, the transistors show stable device performance under temperature stress (5-50 degrees C), gate-bias stress, continuous long-term transfer scans for 24 h (>3000 cycles), and aging test (up to 100 days) demonstrating the excellent potential for futuristic high-performance robust transient devices and circuits. Finally, the effect of transience on the electrical functioning of devices on Mg foils (at pH 8) and degradation of Mg foils at different pH values is studied by hydrolysis. The outcome from these experiments demonstrates the potential of direct transfer printing for high-performance transient electronics and also as the new avenue toward zero e-waste.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据