4.2 Article

A GH115 α-glucuronidase structure reveals dimerization-mediated substrate binding and a proton wire potentially important for catalysis

期刊

出版社

INT UNION CRYSTALLOGRAPHY
DOI: 10.1107/S2059798322003527

关键词

alpha-glucuronidases; dimerization; glycoside hydrolase family 115; metal dependence; Grotthuss mechanism

资金

  1. Danish Agency for Science, Technology and Innovation
  2. Technical University of Denmark

向作者/读者索取更多资源

Xylan is an important component of plant cell walls and has potential as a biomaterial source. Xylanases that catalyze the hydrolysis of xylan face challenges due to steric hindrance caused by sugar moieties substituents. This study focuses on understanding the molecular interactions between a xylan-specific alpha-glucuronidase (GH115) and xylan backbone, as well as the involvement of divalent ions in the formation of the enzyme-substrate complex.
Xylan is a major constituent of plant cell walls and is a potential source of biomaterials, and the derived oligosaccharides have been shown to have prebiotic effects. Xylans can be highly substituted with different sugar moieties, which pose steric hindrance to the xylanases that catalyse the hydrolysis of the xylan backbone. One such substituent is alpha-D-glucuronic acid, which is linked to the O2' position of the beta-1,4 D-xylopyranoses composing the main chain of xylans. The xylan-specific alpha-glucuronidases from glycoside hydrolase family 115 (GH115) specifically catalyse the removal of alpha-D-glucuronic acid (GlcA) or methylated GlcA (MeGlcA). Here, the molecular basis by which the bacterial GH115 member wtsAgu115A interacts with the main chain of xylan and the indirect involvement of divalent ions in the formation of the Michaelis-Menten complex are described. A crystal structure at 2.65 angstrom resolution of wtsAgu115A originating from a metagenome from an anaerobic digester fed with wastewater treatment sludge was determined in complex with xylohexaose, and Asp303 was identified as the likely general acid. The residue acting as the general base could not be identified. However, a proton wire connecting the active site to the metal site was observed and hence a previous hypothesis suggesting a Grotthuss-like mechanism cannot be rejected. Only a single molecule was found in the asymmetric unit. However, wtsAgu115A forms a dimer with a symmetry-related molecule in the crystal lattice. The xylohexaose moieties of the xylohexaose are recognized by residues from both protomers, thus creating a xylohexaose recognition site at the dimer interface. The dimer was confirmed by analytical size-exclusion chromatography in solution. Kinetic analysis with aldouronic acids resulted in a Hill coefficient of greater than 2, suggesting cooperativity between the two binding sites. Three Ca2+ ions were identified in the wtsAgu115A structures. One Ca2+ ion is of particular interest as it is coordinated by the residues of the loops that also interact with the substrate. Activity studies showed that the presence of Mg2+ or Mn2+ resulted in a higher activity towards aldouronic acids, while the less restrictive coordination geometry of Ca2+ resulted in a decrease in activity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据